• Title/Summary/Keyword: stiffness of impact spring

Search Result 43, Processing Time 0.027 seconds

Active Control of Isolation Table Using $H_\infty$ Control ($H_\infty$ 제어를 이용한 방진대의 능동제어)

  • Kim, Kyu-Young;Yang, Hyun-seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3079-3094
    • /
    • 1996
  • Recently, the high-precision vibration attenuation technology becomes the essence fo the seccessful development of high-integrated and ultra-precision industries, and is expected to continue playing a key role in the enhancement of manufacturing technology. Vibration isolation system using an air-spring is widely employed owing to its excellent isolation characteristics in a wide frequency range. It has, however, some drawbacks such as low-stiffness and low-damping features and can be easily excited by exogenous disturbances, and then vibration of table is remained for a long time. Consequently, the need for active vibration control for an air-spring vibration isolation system becomes inevitable. Furthermore, for an air-spring isolation table to be successfully employed in a variety of manufacturing sites, it should have a guaranteed robust performance not only to exogenous disturbances but also to uncertainties due to various equipments which might be put on the table. In this study, an active vibration suppression control system using H.inf. theory is designed and experiments are performed to verify its robust performance. An air-spring vibration isolation table with voice-coil-motors as its actuators is designed and built. The table is modeled as 3 degree-of-freedom system. An active control system is designed based on $H_\infty$control theory using frequency-shaped weighting functions. Analysis on its performance and frequency responce properties are done through numerical simulations. Robust characteristics of$H_\infty$ control on disturbances and model uncertainties are experimentally verified through (i) the transient response to the impact excitation of the table, (ii) the steady-state response to the harmonic excitation, and (iii) the response to the mass change of the table itself. An LQG controller is also designed and its performance is compared with the $H_\infty$ controller.

A Study on Stability Assessment of Vehicle and Track on Transition between Conventional and Zero-Longitudinal Resistance Rail Fastener (일반체결구/활동체결구 접속구간 차량 및 궤도 안정성 평가에 관한 연구)

  • Yang, Sin-Chu;Jang, Seung-Yup;Yoo, Eun;Kim, Jin-Young;Hong, Sung-Mo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1078-1083
    • /
    • 2008
  • In this paper, assessed are the stability of vehicle and track according to vertical support stiffness difference on the transition between conventional and zero-longitudinal resistance (ZLR) rail fastener on bridge. For this, the spring constants of rail fastener have been determined according to different load ranges - KTX load (with or without impact factor) and test load of EN standards - from results of laboratory test on rail pad, the stability analysis of vehicle and track has been performed according to numbers or installation length of ZLR fasteners using vertical vehicle-track coupled model to consider train-track interaction. The analysis results reveal that only the wheel load variation slightly exceed the limit value when 2 ZLR fasteners are used with spring constant determined within the EN test load range, but, in all other cases, all evaluation items are satisfied. Thus, it can be said that the stability of vehicle and track will not be degraded by ZLR fastener.

  • PDF

A Study on the Development of Tube-to-Support Nonlinear Impact Analysis Model (튜브와 지지대 사이의 비선형 충격해설모델 개발에 관한 연구)

  • 김일곤;박진무
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.515-524
    • /
    • 1995
  • Tubes in heat exchanger of fuel rods in reactor core are supported at intemediate point by support p0lates or springs. Current practice is, in case of heat exchanger, to allow clearance between tube and support plate for design and manufacturing consideration. And in case of fuel rod the clearance in support point can be generated due to the support spring force relaxation. Flow-induced vibration of a tube can cause it to impact or rub against support plate or against adjacent tubes and can result in fretting-wear. The tube-to- support dynamic interaction is used to relate experimental wear data from single-span test rigs to real multi-span heat exchanger configurations. The dynamic interaction cna be measured during experimental wear tests. However, the dynamic interaction is difficult to measure in real heat exchangers and, therefore, analytical techniques are required to estimate this interaction. This paper describels the nonlinear impact model of DAGS(Dynamic Analysis of Gapped Structure) code which simulates the tube response to external sinusodial or step excitation and predicts tube motion and tube-to-support dynamic interaction. Three experimental measurements-two single span rods excited by sinusodial force and a two span rod impacted by a steel ball are compared from the simulation nonlinear model of DAGS code. The simulation results from DAGS code are in good agreement with measurements. Therefore, the developed model of DAGS code is good analytical tool for estimating tube-to-support dynamic interaction in real heat exchangers.

  • PDF

Analysis for Movement Characteristics of Pneumatic Impulsive Actuator for Robotic Colonoscope (내시경용 로봇을 위한 공압구동기의 운동특성 해석)

  • Lee, Jin-Hui;Jeong, Yeon-Gu;Gang, Byeong-Gyu;Park, Jong-O
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1638-1644
    • /
    • 2002
  • A novel locomotion using the pneumatic impulsive actuator was proposed for robotic colonoscope. This locomotion showed good moving performance in the environment of rigid pipe, however, the displacement per one impact(step displacement) is greatly reduced due to the low stiffness and high damping characteristics of the colon. Therefore, the modeling technique based on spring and damping system is studied to predict the step displacement and some parametric studies are carried out to investigate main parameters that influence the step displacement of locomotion. Based on simulation result, a new locomotion to control the resistance force is suggested and fabricated. Through the experiment on the colon, the usefulness of modeling technique is confirmed and successful improvement of moving characteristics is achieved.

Numerical study on the walking load based on inverted-pendulum model

  • Cao, Liang;Liu, Jiepeng;Zhang, Xiaolin;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • In this paper, an inverted-pendulum model consisting of a point supported by spring limbs with roller feet is adopted to simulate human walking load. To establish the kinematic motion of first and second single and double support phases, the Lagrangian variation method was used. Given a set of model parameters, desired walking speed and initial states, the Newmark-${\beta}$ method was used to solve the above kinematic motion for studying the effects of roller radius, stiffness, impact angle, walking speed, and step length on the ground reaction force, energy transfer, and height of center of mass transfer. The numerical simulation results show that the inverted-pendulum model for walking is conservative as there is no change in total energy and the duration time of double support phase is 50-70% of total time. Based on the numerical analysis, a dynamic load factor ${\alpha}_{wi}$ is proposed for the traditional walking load model.

A coupled vibration model of double-rod in cross flow for grid-to-rod fretting wear analysis

  • H. Huang;T. Liu;P. Li;Y.R. Yang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1407-1424
    • /
    • 2024
  • In Pressurized Water Reactors, most of the failed fuel rods are often observed at the periphery of the fuel assembly, especially near the core baffle. The rod vibration-induced fretting wear is a significant failure mechanism strongly correlated with the coolant and support conditions. This paper presents a coupled vibration model of double-rod to predict the grid-to-rod fretting (GTRF) wear. A motion-dependent fluid force model is used to simulate the coolant cross flow, the gap constraints with asymmetric stiffness between spring and dimple on the vibration form, and the fretting wear are discussed. The results show the effect of the coupled vibration on the deterioration of wear, providing a sound theoretical explanation of some failure phenomena observed in the previous experiment. Exploratively, we analyze the impact of the baffle jet on the GTRF wear, which indicates that the high-velocity cross-flow will significantly affect the vibration forms while sharply changing the wear behavior.

A Study on Lateral Damper for Improving Running Performance of Subway Vehicle (도시철도 전동차 주행성능 향상을 위한 횡댐퍼에 관한 연구)

  • Jeon, Ju-Yun;Hur, Hyun-Moo;Shin, Yu-Jeong;You, Won-Hee;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1856-1861
    • /
    • 2011
  • As a secondary suspension, the air spring has not good lateral stiffness characteristics. In order to make up for this weak point, lateral damper is used between bogie and carbody. The lateral vibration of carbody can be reduced by the lateral damper. When the damping force of lateral damper becomes worse, the running stability and ride comfort of the railway vehicle go down. Simultaneously the lateral motion of carbody is increased. In this study, the lateral displacement of carbody was studied by the multibody dynamic analysis in accordance with lateral damping force to find the cause of abnormal noise(impact noise) when the vehicle is running. The suitable lateral damping force was reviewed in order not to generate abnormal noise.

  • PDF

Lateral Damper of Subway Vehicle for Preventing Abnormal Impact (지하철 전동차 비정상 충격 방지를 위한 횡댐퍼에 관한 연구)

  • Shin, Yujeong;You, Wonhee;Park, Joonhyuk;Hur, Hyunmoo;Jeon, Juyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • In a subway vehicle, a lateral damper is used for compensating the lateral stiffness deterioration due to the air-spring as a secondary suspension. This lateral damper can reduce the lateral vibration of the carbody. When the damping force of the lateral damper is lowered, the running stability and ride quality of the subway vehicles worsens and the lateral motion of the carbody is increased. In this study, the lateral displacement variation of the carbody according to the damping force of the lateral damper was analyzed by multi-body dynamics to solve the abnormal impact problem during vehicle operation. Furthermore, the noise and vibration due to abnormal impact were considered. An adequate damping coefficient of the lateral damper for the subway vehicle treated in this paper was suggested for preventing abnormal impact.

Impact Analysis of Communication Time Delay and Properties of a Haptic Device on Stability Boundary for a Haptic System with a First-Order Hold (일차홀드 방식을 포함한 햅틱 시스템의 안정성 영역에 대한 통신시간지연과 햅틱장치 물성치의 영향 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.572-578
    • /
    • 2017
  • Haptic systems help users feel a realistic sensation when they manipulate virtual objects in the remote virtual environment. However, there are communication time delays that may make the haptic system unstable. This paper shows the relationship between communication time delay, properties of a haptic device, and the stability of the haptic system with the first-order hold method in a simulation. The maximum available stiffness of a virtual spring with the first-order hold method is larger than in the zero-order hold method when there is no time delay. However, when the communication time delay is much larger than the sampling time, the maximum available stiffness to guarantee the stability becomes the same, irrespective of the sample-hold methods. Besides, the maximum available stiffness increases in inverse proportion to the communication time delay and in proportional to the damping coefficient of the haptic device.

Finite element model updating of an arch type steel laboratory bridge model using semi-rigid connection

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris;Kartal, Murat Emre;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.541-561
    • /
    • 2010
  • This paper presents finite element analyses, experimental measurements and finite element model updating of an arch type steel laboratory bridge model using semi-rigid connections. The laboratory bridge model is a single span and fixed base structure with a length of 6.1 m and width of 1.1m. The height of the bridge column is 0.85 m and the maximum arch height is 0.95 m. Firstly, a finite element model of the bridge is created in SAP2000 program and analytical dynamic characteristics such as natural frequencies and mode shapes are determined. Then, experimental measurements using ambient vibration tests are performed and dynamic characteristics (natural frequencies, mode shapes and damping ratios) are obtained. Ambient vibration tests are performed under natural excitations such as wind and small impact effects. The Enhanced Frequency Domain Decomposition method in the frequency domain and the Stochastic Subspace Identification method in the time domain are used to extract the dynamic characteristics. Then the finite element model of the bridge is updated using linear elastic rotational springs in the supports and structural element connections to minimize the differences between analytically and experimentally estimated dynamic characteristics. At the end of the study, maximum differences in the natural frequencies are reduced on average from 47% to 2.6%. It is seen that there is a good agreement between analytical and experimental results after finite element model updating. Also, connection percentages of the all structural elements to joints are determined depending on the rotational spring stiffness.