• Title/Summary/Keyword: stiffness modulation

Search Result 14, Processing Time 0.029 seconds

Analysis on Active spring effect in human-body having redundant actuation with application to motion frequency (여유구동을 지닌 인체의 능동스프링 현상에 대한 해석과 운동주파수 제어방식으로의 적용)

  • Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.977-989
    • /
    • 1999
  • The purpose of this study is to analyze how the human body having more muscles than its degree-of-freedom modulates an effective stiffness using redundant actuation, and to apply this concept to the design and control of advanced machines which requires adaptable spring. To investigate the adaptable stiffness phenomenon due to redundant actuation in the human body, this paper derives a general stiffness model of the Human body. In particular, for a planar 1 DOF human arm model, a planar 2 DOF human arm model, a spherical 3 DOF shoulder model, a 4 DOF human arm model, and a 7 DOF human arm model, the required nonlinear geometry ad the number of required actuator for successful modulation of the effective stiffness are analyzed along with a load distribution method for modulation of the required stiffness of such systems. Secondly, the concept of motion frequency modulation is introduced to show the usefulness of adaptive stiffness modulation. The motion frequency modulation represents a control of stiffness and / or inertia properties of systems. To show the effectiveness of the proposed algorithm, simulations are performed for 2 DOF anthropomorphic robot.

  • PDF

Biomimetic Hopping Strategy for Robots

  • Sung, S.H.;Youm, Y.;Chung, W.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2654-2659
    • /
    • 2003
  • In this paper, we present biomimetic hopping strategy which is more human-like for legged robot through stiffness modulation. Stiffness value is calculated from the motion of body center of gravity. This method enable to reduce impact force on touch-down, adaption on ground stiffness change and height modulation. Simple selected models will be used to validate this method. For general model, singular perturbation is used for control and simulation using stiffness modulation is presented.

  • PDF

Modulation of Impedance Parameters for a Teleoperator Using Distance Measurement (거리센서를 이용한 원격 조종 장치의 임피던스 변조)

  • 송지혁;박종현;김상철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.84-84
    • /
    • 2000
  • This paper proposes a new impedance control scheme based on a variable stiffness matrix for a bilateraL teleoperation. In this scheme, stiffness matrix of the impedance model in the slave is modulated based on the distance, measured by an ultrasonic sensor, between the slave and environment. At the same time, the stiffness matrix of the master is also changed accordingly in order for the impedance parameters of the combined system to remain constant The proposed scheme is implemented on a 1-dof master/slave system to perform a simple task. In the experiments, the teleoperator with the impedance parameter modulation shows better performance than one with fixed impedance parameters, especially in reducing task execution time and in avoiding excessive external forces.

  • PDF

Relationship between Dimensionless Leg Stiffness and Kinetic Variables during Gait Performance, and its Modulation with Body Weight

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.249-255
    • /
    • 2016
  • Objective: This purpose of this study was to analyze the relationship between dimensionless leg stiffness and kinetic variables during gait performance, and its modulation with body weight. Method: The study sample consisted of 10 young women divided into 2 groups (Control, n=5 and Obese, n=5). Four camcorders (HDR-HC7/HDV 1080i, Sony Corp, Japan) and one force plate (AMTI., USA) were used to analyze the vertical ground reaction force (GRF) variables, center of pressure (COP), low limb joint angle, position of pelvis center and leg lengths during the stance phase of the gait cycle. Results: Our results revealed that the center of mass (COM) displacement velocity along the y-axis was significantly higher in the obese group than that in control subjects. Displacement in the position of the center of the pelvis center (Z-axis) was also significantly higher in the obese group than that in control subjects. In addition, the peak vertical force (PVF) and dimensionless leg stiffness were also significantly higher in the obese group. However, when normalized to the body weight, the PVF did not show a significant between-group difference. When normalized to the leg length, the PVF and stiffness were both lower in the obese group than in control subjects. Conclusion: In the context of performance, we concluded that increased dimensionless leg stiffness during the gait cycle is associated with increased velocity of COM, PVF, and the change in leg lengths (%).

Pressure Modulation Control of Powershift Shuttle Clutch of Tractor (트랙터용 파워시프트 전.후진 클러치의 압력 모듈레이션 제어)

  • Cho, Jae-Mun;Huh, Jun-Young;Chong, Byung-Hak;Kim, Kyeong-Uk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1572-1577
    • /
    • 2003
  • The powershift transmission have the advantage of easier operation and higher efficiency by using the hydraulic clutch and mechanical power transfer system. It is important to control the engaging pressure and time. The hydraulic control system is used for these controls of the modulator valve, the accumulator, the sump valve and etc. This study have made a simulator for verifying the pressure characteristic of the shuttle powershift transmission and developed the computer simulation model of the hydraulic components and system by using 'AMESim'. As a result, the design parameters which have an effect on the pressure modulation are verified to the spring stiffness of the modulator valve and the volume of the accumulator.

  • PDF

Task-Based Analysis on Number of Robotic Fingers for Compliant Manipulations

  • Kim, Byoung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.333-338
    • /
    • 2009
  • This paper presents a task-based analysis on the number of independent robotic fingers required for compliant manipulations. Based on the stiffness relation between operational space and fingertip space of a multi-fingered object manipulating system, we describe a technique for modulation of the fingertip stiffness without inter-finger coupling so as to achieve the desired stiffness specified in the operational space. Thus, we provides a guide line how many fingers are basically required for successful multi-fingered compliant tasks. Consequently, this paper enables us to assign effectively the number of fingers for various compliant manipulations by robot hands.

Fabrication of Tungsten Probe Tips for AFM using Electrochemical Etching (전기화학적 에칭법을 이용한 AFM용 텅스텐 탐침 제작에 관한 연구)

  • Han, Gue-Bum;Jang, Hyuna;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.213-217
    • /
    • 2013
  • As commercial atomic force microscopy (AFM) probes made of Si and $Si_3N_4$ have low stiffness, it is difficult to induce sufficient elastic deformation on the surface of a specimen in a tapping mode. Therefore, high-guality phase contrast images can not obtained. On the other hand, a tungsten AFM probe has relatively higher stiffness than a commercial AFM probe. Accordingly, it is expected to provide an enhanced phase contrast image, which is an effective tool for achieving a better understanding of the micromechanical properties of worn surfaces and wear mechanisms. In this study, on electrochemical etching method was optimized to fabricate tungsten probe tips for an AFM. Electrochemical etching was performed by applying pulse waves with a 20% duty cycle at various voltages instead of only a DC voltage, which has been commonly used.

A Compliance Control Method for Robot Hands with Consideration of Decoupling among Fingers/Joints (손가락/관절 간의 기구학적 독립을 고려한 로봇 손의 컴플라이언스 제어 방법)

  • Kim, Byoung-Ho;Yi, Byung-Ju;Suh, Il-Hong;Oh, Sang-Rok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.568-577
    • /
    • 2000
  • In this paper for an object grasped by a robot hand to work in stiffness control domain we first investigate the number of fingers for successful stiffness modulation in the object operational space. Next we propose a new compliance control method for robot hands which consist of two steps. RIFDS(Resolved Inter-Finger Decoupling Solver) is to decompose the desired compliance characteristic specified in the op-erational space into the compliance characteristic in the fingertip space without inter-finger coupling and RIJDS(Resolved Inter-Joint Decoupling Solver) is to decompose the fingertip space without inter-finger coupling and RIJDS(Resolved inter-Joint Decoupling Solver) is to decompose the compliance characteristic in the finger-tip space into the compliance characteristic given in the joint space without inter-joint coupling. Based on the analysis results the finger structure should be biominetic in the sense that either kniematic redundancy or force redundancy are required to implement the proposed compliance control scheme, Five-bar fingered robot hands are used as an illustrative example to implement the proposed compliance control method. To show the effectiveness of the proposed compliance control method simulations are performed for two-fingered and three-fingered robot hands.

  • PDF

Effect of Transient Isokinetic Exercise on Cardiac Autonomic Nervous Modulation and Muscle Properties (일회성 등속성 운동이 심장 자율신경 조절 및 근속성에 미치는 영향)

  • Soo-Kyoung Park;Si-Eun Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.27-39
    • /
    • 2023
  • Purpose : The aim of this study was to identify the influence of transient isokinetic exercise on cardiac autonomic modulation and muscle properties in healthy male subjects. Methods : Twenty-eight healthy males underwent isokinetic exercise of both knee joints using a Biodex systems 3 isokinetic dynamometer with an angular velocity of 60 °/sec. The changes in activity of the autonomic nervous system, as determined by heart rate variability (HRV), and in muscle properties were evaluated at three times: pre-exercise, immediately post-exercise, and 10 min post-exercise. Results : The time domain analysis of HRV revealed significant changes in the beat count and mean and minimal heart rate (HR) measured at pre-exercise, immediately post-exercise, and 10 min post-exercise (p<.001). The beat count and mean HR were markedly increased immediately post-exercise compared to pre-exercise, but then significantly decreased at 10 min post-exercise (p<.001). All parameters of the frequency domain were significantly altered by isokinetic exercise (p<.01). The low frequency/high frequency (LF/HF) ratio, as an index for the sympathovagal balance, was elevated by exercise and remained at a similarly high level at 10 min post-exercise (p<.01). The muscle properties of rectus femoris were changed as follows: Muscle tone and stiffness were significantly increased between pre-exercise and immediately post-exercise (p<.001), and between pre-exercise and at 10 min post-exercise (p<.001). Whereas, the elasticity showed no significant change. Conclusion : These results demonstrated that transient isokinetic exercise could induce changes in cardiac autonomic control and muscle properties. In particular, up-regulation of LF/HF ratio after exercise signifies thus enhanced sympathetic modulation by isokinetic exercise. Therefore, it is needed to understand the cardiovascular risks that may arise during isokinetic exercise for providing the basic evidence to establish appropriate isokinetic exercise protocols as effective rehabilitation exercises.