• Title/Summary/Keyword: stiffness method

Search Result 3,876, Processing Time 0.032 seconds

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.

Longitudinal and Flexural Vibration Analysis of a Beam Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 보형구조물의 종.굽힘진동해석)

  • Moon, D.H.;Choi, M.S.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The authors have studied vibration analysis algorithm which was suitable to the personal computer. Recently, we presented the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficients which are related to force and displacement vectors at each node. In this paper, we describes the general formulation for the longitudinal and flexural coupled vibration analysis of a beam type structure by the TSCM. And the superiority of the TSCM to the finite element method(FEM) in the computation accuracy, cost and convenience was confirmed by results of the numerical computation and experiment.

  • PDF

Design of high stiffness and lightweight body for stiffness distribution ratio (강성 배분비를 괴려한 고강성 경량화 차체 설계)

  • Yang, Hee-Jong;Kim, Ki-Chang;Yim, Hong-Jae;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.562-566
    • /
    • 2006
  • Lightweight body can cause a low stiffness due to the decrease of panel thickness and reinforcing member. The other way, high stiffness body demands an increase of mass. Front pillar section area is decreased due to driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at side body structure. This paper will describe a process used to evaluate the stiffness distribution ratio based on research of strain energy analysis of the tip rotation method. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio. In this way the designer will be aided by a defined design guide and a set of supporting tool to help him work towards a good design

  • PDF

Comparing calculation methods of storey stiffness to control provision of soft storey in seismic codes

  • Tabeshpour, Mohammad Reza;Noorifard, Azadeh
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.1-23
    • /
    • 2016
  • Numerous buildings have been damaged or destroyed in previous earthquakes by developing soft storey. Almost all the seismic codes have provisions to prevent soft storey in structures, most of them have recommended the ratio of stiffness between adjacent storeys, but none of them has proposed the method to calculate the storey stiffness. On the other hand a great number of previous researches on stiffness have been focused on approximate methods and accurate methods by using analytical softwares have been almost neglected. In this study, six accurate methods for calculating the storey stiffness have been studied on 246 two-bay reinforced concrete frames. It is shown with the results of the statistical study and structural analysis that method 3 in which there is no modification of the original model and the forces with triangular distribution similar to seismic forces are applied to the center of mass of all storeys has acceptable accuracy and desirable efficiency for designing and controlling structures.

Rocking Stiffness of Electrical Cabinet for In-Cabinet Response Spectrum (캐비닛내부응답스펙트럼을 위한 전기캐비닛 전도강성)

  • Chung, Yon Ha;Hong, Kee-Jeung;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Electrical instruments and devices contained in cabinets for controlling nuclear power plants require seismic qualification; likewise, in-cabinet response spectrum (ICRS) is necessary. Gupta et al. (1999) suggested the Ritz method, where rocking, frame bending, and plate bending behaviors of cabinets are considered, as a method for determining ICRS. This research proposes a method to determine the rocking stiffness of cabinets, which represents its rocking behavior. The cabinet is fixed on mounting frames and is connected to the base concrete by anchors. When horizontal excitation is applied to the cabinet, the mounting frames at anchors are locally deformed, the mounting frames are bent, and then rocking in the cabinet becomes evident. A method to determine equivalent vertical spring stiffness representing the local deformation of the mounting frames at anchors is then proposed. Subsequently, the rocking stiffness of this mounting frame is calculated upon assumption of the mounting frame as an indeterminate beam.

A Study for Bearing Capacity Calculation Method of Very Soft Ground with Reinforced Surface (표층처리공법으로 개량된 초연약지반의 지지력산정방법에 관한 연구)

  • Ham, Tae-Gew;Cho, Sam-Deok;Yang, Kee-Sok;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.303-314
    • /
    • 2010
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing the design parameter for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 49 kinds of the laboratory model tests were conducted. And the result the study suggested $\beta_s$, the stiffness coefficient to evaluate the stiffness effect of reinforcement materials. Then, it was also found that the stiffness coefficient, $\beta_s$ as the testing constant would be appropriate as high as 1.0, 1.1 and 1.5 for geotextile, geogrid and steel bar, respectively. And It was evaluated that the stiffness effect affecting reinforcement improvement effect would be reduced as the thickness of embeded depth increases and that RFe, the stiffness effect reduction coefficient would have positive correlation with H/B. Finally, it was confirmed that the bearing capacity gained from the method to calculate bearing capacity, which was suggested in the study, would almost correctly estimate the capacity, demonstrating the appropriateness of the proposed bearing capacity calculation method.

  • PDF

A Method for Evaluation of Hollow Existence in Sublayers of Concrete Pavement Considering Pavement Stiffness (포장강성을 고려한 콘크리트 포장하부 공동유무 평가방법)

  • Sohn, Dueck Su;Lee, Jae Hoon;Jeong, Ho Seong;Park, Joo Young;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.95-102
    • /
    • 2013
  • PURPOSES: The existing method evaluating the existence of the hollows in concrete pavement does not consider the stiffness of pavement. In addition, the method uses unreasonable logic judging the hollow existence by the deflection caused by zero loading. In this study, the deflection of slab corner due to heavy weight deflectometer (HWD) was measured in concrete pavement sections where underground structures are located causing the hollows around them. METHODS: The modulus of subgrade reaction obtained by comparing the actual deflection of slab to the result of finite element analysis was calibrated into the composite modulus of subgrade reaction. The radius of relative stiffness was calculated, and the relationship between the ratio of HWD load to the radius of relative stiffness and the slab deflection was expressed as the curve of secondary degree. RESULTS: The trends of the model coefficients showing width and maximum value of the curve of secondary degree were analyzed by categorizing the pavement sections into three groups : hollows exist, additional investigation is necessary, and hollows do not exist. CONCLUSIONS: The results analyzed by the method developed in this study was compared to the results analyzed by existing method. The model developed in this study will be verified by analyzing the data obtained in other sections with different pavement structure and materials.

Stiffness Design Method of Steel Structures using Resizing Techniques (재분배기법을 이용한 강구조물의 강성설계법)

  • Ahn, Sun A;Park, Hyo Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.63-72
    • /
    • 1998
  • The stiffness design method is presented as a drift control model of steel structures and applied to design of space trusses subjected to stress and displacement constraints. The stiffness design method is developed by integrating the resizing techniques for an effective drift control algorithm with the strength design process according to the commonly used design specifications such as allowable stress design. In the resizing technique the amount of material to be modified depends on the member displacement participation factors and is determined by an optimization technique. Using the stiffness design method, a structural design model for steel structures is proposed and applied to two verifying examples. As demonstrated in the examples, the displacement of the structures can be effectively controlled without expensive computational cost.

  • PDF

tudy on Seismic Design of Buckling Restrained Braced Frame System Using Inverse Stiffness Method (역강성 설계법을 이용한 비좌굴 가새골조시스템의 내진설계에 관한 연구)

  • Kim, Se-Hyun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.106-114
    • /
    • 2006
  • This study proposed the applicability of inverse stiffness method on the seismic design for steel frame with buckling restrained braces and the design results were compared with former research's. The concept of this method is simple and efficient. Furthermore it is able to reflect the high mode's effect and control the ductility factors of each story individually. Design results using the proposed method showed that according to increase of the given target drift, the areas of brace generally decreased but partially increased in some stories of the tall structure with very large ductility. And the post yield stiffness ratio's variation had more effect on the design results in the small post yield stiffness ratio.

A Study on the Field Application to Axial Stiffness Applying Corner Strut of Retainingwall Using Numerical Analysis (수치해석을 이용한 흙막이벽체의 사보강버팀보에 적용하는 축강성에 대한 현장 적용성 연구)

  • Lee, Yeong-Jin;Lee, Soung-Kyu;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • Unlike the horizontal strut, the corner strut causes bending behavior by the installation angle when soil pressure occurs, so there is a limit to its application as a elasto plastic method that requires only the axial stiffness of struts. Therefore, this study attempted to approach a method of modifying axial stiffness data to present an analysis method for corner struts in elasto plastic method, and linear elasticity analysis was used for this. And, through Linear elasticity analysis, axial stiffness data for corner struts installed at the actual site were calculated. The behavior of the retainingwall was confirmed by applying the calculated axial stiffness data of corner struts to elasto plastic method, and its applicability was evaluated by comparing it with the measurement results and the finite element analysis results. As a result of the study, when the axial stiffness data of the corner struts was applied using Linear elasticity analysis(Case 1, Case 3), the axial stiffness data decreased to 9% to 17% compared to the general method of applying the axial stiffness of the struts(Case 2, Case 4), and the displacement of the retainingwall increased to 25.33% to 64.42%. Comparing this result with the measurement results, when Linear elasticity analysis was used(Case 1, Case 3), the behavior of the retainingwall during the elasto plastic method was better shown.