DOI QR코드

DOI QR Code

A Study on the Field Application to Axial Stiffness Applying Corner Strut of Retainingwall Using Numerical Analysis

수치해석을 이용한 흙막이벽체의 사보강버팀보에 적용하는 축강성에 대한 현장 적용성 연구

  • Lee, Yeong-Jin (Department of Civil and Environmental Engineering, Daejin University) ;
  • Lee, Soung-Kyu (Department of Civil and Environmental Engineering, Daejin University) ;
  • Lee, Kang-Il (Department of Construction and Environmental Engineering, Daejin University)
  • Received : 2022.05.04
  • Accepted : 2022.06.20
  • Published : 2022.06.30

Abstract

Unlike the horizontal strut, the corner strut causes bending behavior by the installation angle when soil pressure occurs, so there is a limit to its application as a elasto plastic method that requires only the axial stiffness of struts. Therefore, this study attempted to approach a method of modifying axial stiffness data to present an analysis method for corner struts in elasto plastic method, and linear elasticity analysis was used for this. And, through Linear elasticity analysis, axial stiffness data for corner struts installed at the actual site were calculated. The behavior of the retainingwall was confirmed by applying the calculated axial stiffness data of corner struts to elasto plastic method, and its applicability was evaluated by comparing it with the measurement results and the finite element analysis results. As a result of the study, when the axial stiffness data of the corner struts was applied using Linear elasticity analysis(Case 1, Case 3), the axial stiffness data decreased to 9% to 17% compared to the general method of applying the axial stiffness of the struts(Case 2, Case 4), and the displacement of the retainingwall increased to 25.33% to 64.42%. Comparing this result with the measurement results, when Linear elasticity analysis was used(Case 1, Case 3), the behavior of the retainingwall during the elasto plastic method was better shown.

사보강버팀보는 수평버팀보와 달리 토압이 발생할 경우 설치각에 의한 휨거동이 발생하기 때문에 버팀보의 축강성만이 요구되는 탄소성해석으로는 그 적용에 대한 한계가 존재한다. 따라서, 본 연구에서는 탄소성해석시의 사보강버팀보에 대한 해석방안을 제시하기 위하여 축강성데이터를 수정하는 방안으로의 접근을 시도하였으며, 이를 위하여 선형탄성해석을 이용하였다. 그리고, 선형탄성해석을 통하여 실제현장에 설치된 사보강버팀보에 대한 축강성데이터를 산정하였다. 산정한 사보강버팀보의 축강성데이터는 탄소성해석에 적용하여 흙막이벽체의 거동을 확인하였으며, 이를 계측결과 및 유한요소해석결과와 비교하여 그 적용성을 평가하였다. 연구 결과 선형탄성해석을 이용하여 사보강버팀보의 축강성데이터를 적용한 경우(Case 1, Case 3)는 버팀보의 축강성을 적용하는 일반적인 방법(Case 2, Case 4)에 비하여 축강성데이터는 9~17% 수준으로 감소하였으며, 탄소성 해석시의 흙막이벽체의 변위는 25.33%~64.42%로 증가하였다. 이 결과를 계측결과와 비교한바 선형탄성해석을 활용한 경우(Case 1, Case 3)는 탄소성해석시의 흙막이벽체 거동을 더욱 잘 나타내었다.

Keywords

References

  1. Bowles, J. E. (1988), "Foundation Analysis and Design 4th Edition", New York, McGraw-Hill.
  2. Bowles, J. E. (1996), "Foundation Analysis and Design 5th Edition", New York, McGraw-Hill.
  3. Chen, W. W. (1978), "Discussion: Lateral Load Piles: Program Documentation", Journal of Geotechnical Engineering Division, ASCE, Vol.103, GT1, pp.161-162. https://doi.org/10.1061/AJGEB6.0000568
  4. Clough, G. W. and O'Rourke, T. D. (1990), "Construction induced movements of insitu walls", Design and Performance of Earth Retaining Structures, Geotechnical special publication, ASCE, No.25, pp.439-470.
  5. Hukuoka, M. (1966), "Damage to civil engineering structures", Soils and Foundations, Vol.6, No.2, pp.125-145.
  6. Hwang, S. H. (2019), "Design of Earth Retaining Structures", Seoul, CIR.
  7. Jeong, S. S. and Kim, Y. H., (2009), "Characteristics of Collapsed Retaining Walls Using Elasto-plastic Method and Finite Element Method", Journal of Korean Geotechnical Society, Vol.25, No.4, pp.19-29.
  8. Jeong, S. S., Sim, J. U. and Lee, S. J. (2016), "A Study on the Rational Application of 3D Numerical Analysis for Anchored Earth Retaining Wall", Journal of Korean Geotechnical Society, Vol.32, No.4, pp.29-39. https://doi.org/10.7843/KGS.2016.32.4.29
  9. Kang, B. Y., Park, M. C., Lee, S. H., Jang, K. S. Koo, J. G. and Park, K. H. (2016), "A Study on Evaluation of Modulus of Horizontal Subgrade Reaction through Field Test and Numerical Analysis", Journal of Korean Geo-Environmental Society, Vol.17, No.4, pp.5-15. https://doi.org/10.14481/JKGES.2016.17.4.5
  10. KGS (2002), "Excavation and Earth Retaining Method", Seoul, Goomibook.
  11. Lee, Y. J., Yoo, J. J., Woo D. H. and Lee, K. I. (2022), "Analysis of the Behavior of Retaining Wall According to Stiffness and Preloading of Strut", KGS Spring National Conference, pp.268-269.
  12. Nakai, T., Kawano, H., Murata, K., Banno, M. and Hashimoto, T. (1999), "Model Test and Numerical Simulation of Braced Excavation in Sandy Ground: Influences of Construction History, Wall Friction, Wall stiffness, Strut Position and Strut Stiffness", Journal of Japaness Geotechnical Society, Vol.39, No.3, pp.1-12.
  13. Ryu, S. Y., Kwak, N. K., Park, M. C., Jeong, S. G. and Lee, S. (2012), "Estimation of Coefficient of Horizontal Subgrade Reactionby the Inverse Analysis on the Lateral Load Test Results", Journal of Korean Geo-Environmental Society, Vol.13, No.8, pp.15-24.
  14. Terzaghi, K. and Peck, R. B. (1967), "Soil Mechanics in Engineering Practice 2nd Edition", New York, John Wiley.
  15. Vesic, A. B. (1961), "Bending of beams resting on isotropic elastic solid", Journal of the Engineering Mechanics Division, ASCE, Vol.87, No.2, pp.35-54. https://doi.org/10.1061/JMCEA3.0000212
  16. Yang, K. S. and Oh, S. N. (2000), "Correlation between Strut Preloading and Earth Retaining Structures in Deep Excavations", Journal of Korean Geotechnical Society, Vol.16, No.2, pp.23-30.
  17. Yokoyama (1962), "Dolphin of design method, research design report", Port and Harbour Research Institute, No.2, pp.108-152.