• Title/Summary/Keyword: stiffness factor

Search Result 643, Processing Time 0.029 seconds

Lower Extremity Stiffness Characteristics in Running and Jumping: Methodology and Implications for Athletic Performance

  • Ryu, Joong Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • Objective: The human body is often modelled as a spring-mass system. Lower extremity stiffness has been considered to be one of key factor in the performance enhancement of running, jumping, and hopping involved sports activities. There are several different classification of lower extremity stiffness consisting of vertical stiffness, leg stiffness, joint stiffness, as well as muscle and tendon stiffness. The primary purpose of this paper was to review the literature and describe different stiffness models and discuss applications of stiffness models while engaging in sports activities. In addition, this paper provided a current update of the lower extremity literature as it investigates the relationships between lower extremity stiffness and both functional performance and injury. Summary: Because various methods for measuring lower extremity stiffness are existing, measurements should always be accompanied by a detailed description including type of stiffness, testing method and calculation method. Moreover, investigator should be cautious when comparing lower extremity stiffness from different methods. Some evidence highlights that optimal degree of lower extremity stiffness is required for successful athletic performance. However, the actual magnitude of stiffness required to optimize performance is relatively unexplored. Direct relationship between lower extremity stiffness and lower extremity injuries has not clearly been established yet. Overall, high stiffness is potentially associate risk factors of lower extremity injuries although some of the evidence is controversial. Prospective injures studies are necessary to confirm this relationship. Moreover, further biomechanical and physiological investigation is needed to identify the optimal regulation of the lower limb stiffness behavior and its impact on athletic performance and lower limb injuries.

The Effect of Surface-Friction-Factor-Jump Characteristics on Retordynamics of a Seal (마찰계수 급상승 특성이 실의 로터다이나믹 특성에 미치는 영향)

  • 하태웅
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.197-203
    • /
    • 1996
  • This study is to analyze the rotordynamic effect of surface-friction- factor characteristics on an annular seal. The honeycomb geometry which shows friction-factor-jump phenomena is used in this study. A rotordynamic analysis for a contered annular seal has been developed by incorporating empirical friction-factor model for honeycomb stator surfaces. The results of the analysis for the honeycomb seal showing the friction-factor jump is compared to the non- friction-factor-jump case. The results yield that the friction-factor-jump decreasesdirect stiffness and cross coupled stiffness coefficients, and increases damping coefficient to stabilize rotating machinery in a rotordynamic point of view. The analysis of the honeyeomb seal for the friction-factor-jump case shows reasonably good compared to experimental results, especially, for cross coupled and damping coeffcients.

  • PDF

MULTI-OBJECTIVE OPTIMIZATION OF THE INNER REINFORCEMENT FOR A VEHICLE'S HOOD CONSIDERING STATIC STIFFNESS AND NATURAL FREQUENCY

  • Choi, S.H.;Kim, S.R.;Park, J.Y.;Han, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.337-342
    • /
    • 2007
  • A multi-objective optimization technique was implemented to obtain optimal topologies of the inner reinforcement for a vehicle's hood simultaneously considering the static stiffness of bending and torsion and natural frequency. In addition, a smoothing scheme was used to suppress the checkerboard patterns in the ESO method. Two models with different curvature were chosen in order to investigate the effect of curvature on the static stiffness and natural frequency of the inner reinforcement. A scale factor was employed to properly reflect the effect of each objective function. From several combinations of weighting factors, a Pareto-optimal topology solution was obtained. As the weighting factor for the elastic strain efficiency went from 1 to 0, the optimal topologies transmitted from the optimal topology of a static stiffness problem to that of a natural frequency problem. It was also found that the higher curvature model had a larger static stiffness and natural frequency than the lower curvature model. From the results, it is concluded that the ESO method with a smoothing scheme was effectively applied to topology optimization of the inner reinforcement of a vehicle's hood.

A Study on the Dynamic Properties by Loading Time of Floor Impact Noise Insulation Materials (바닥충격음 완충재의 재하시간에 따른 동적 특성 연구)

  • Kim, Heung-Sik;Jin, Pil-Hwa;Joo, Si-Woong;Jung, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.942-945
    • /
    • 2005
  • The purpose of this study is to suggest a fundamental data for change of dynamic properties according to the loading time of resilient materials. 18 kinds of resilient materials included 4 representative types were measured at the load time of 24hours and 2hours by the method of Korea standard (KS F 2868) measuring the dynamic stiffness and the loss factor of materials under floating floors. As a result, the dynamic stiffness was increased rapidly in case of expandable polystyrene and rubber materials according to the load time, especially before 2 hours. The loss factor was represented that rubber materials with high elasticity are high, and expandable polystyrene, polyester, poly ethylene materials with low elasticity are low.

  • PDF

Analysis of Influence Factors on Dynamic Properties of Floor Impact Noise Insulation Materials (바닥충격음 완충재의 동적특성에 영향을 미치는 요인 분석)

  • Kim, Heung-Sik;Joo, Si-Woong;Kim, Dae-Jun;Kim, Byeung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.946-949
    • /
    • 2005
  • In this paper, influence factors on dynamic properties of floor impact noise insulation materials are suggested. For this purpose measurements on the dynamic stiffness and the loss factor of resilient materials are carried out by Korea standard (KS F 2868) according to the change of density, thickness, design pattern, and composition of materials. As a result the values of dynamic stiffness was decreased at high density and thick thickness, and that of loss factor was increased at low density. For dynamic properties, the pattern of lattice and waffle type material is better than that of plat type, and the mixed composition of materials is better than the composition of double layer materials at same thickness.

  • PDF

Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.655-676
    • /
    • 2013
  • In this study, strength reduction factors and inelastic displacement ratios are investigated for SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. The effect of negative strain - hardening on the inelastic displacement and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. New equations are proposed for strength reduction factor and inelastic displacement ratio of interacting system as a function of structural period($\tilde{T}$, T) ductility (${\mu}$) and period lengthening ratio ($\tilde{T}$/T).

Analysis of electrical potentials of patients with stiffness of nape (항강증 환자의 12 경맥 전위측정 연구)

  • Choi Hwan-Soo;Nam Bong-Hyun
    • Korean Journal of Acupuncture
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2003
  • Objectives : Assuming that the characteristic of meridian system has been similar to that of electrical potentials in human body and that measurements of electrical potential at well(井穴) and sea (合穴) points in branches of the twelve meridians(WSBTM) will be representative of measurements of the twelve meridians, to measure the electrical potentials of 13 patients with stiffness of nape(項强症, SN), to find out the characteristic of meridian system in patients with SN. Methods : Electrical potentials of well and sea points in the meridians in 13 patients with stiffness at neck diagnosed as SN were repeatedly measured by physiograph(PowerLab). Measurements of those electrical potentials were analyzed by factor analysis. Results and Conclusions : The electrical potentials of WSBTM at the left side were divided into five factors. On the other hand those at the right side were divided into five factors. In conclusion, electrical potentials of well and sea points might be the representative meridian to show their characteristics.

  • PDF

Behaviour of Tube Structures in terms of Structural Parameters (구조변수에 의한 튜브 구조의 거동)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.327-334
    • /
    • 2002
  • The global behavior of tube structures (including tube and tube(s)-in-tube constructions) is investigated for the behavioral characteristics of the structures and their performance in relation to the various structural parameters. The stiffness factor in terms of the axial stiffness of the columns and the bending stiffness of both columns and beams is chosen as a parameter to explain the global behavior of the structures. The shear-lag phenomenon is also discussed to explain the general behavior of the structures. Three types of tube structures, with various structural parameters, are analysed for the comparative study, and the results are compared to investigate the structural response and performance of such structures. As a result of the comparison it is obtained that the axial stiffness of the columns is the most important factor governing the response of the tube structures under lateral loading

  • PDF

A new method for determining the effective length factor of columns in partially braced frames on elastic supports

  • Adel Slimani;Toufik Belaid;Messaoud Saidani;Fatiha Ammari;Redouane Adman
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.825-835
    • /
    • 2023
  • The effective buckling length factor is an important parameter in the elastic buckling analysis of steel structures. The present article aims at developing a new method that allows the determination of the buckling factor values for frames. The novelty of the method is that it considers the interaction between the bracing and the elastic supports for asymmetrical frames in particular. The approach consists in isolating a critical column within the frame and evaluating the rotational and translational stiffness of its restraints to obtain the critical buckling load. This can be achieved by introducing, through a dimensionless parameter 𝜙i, the effects of coupling between the axial loading and bending stiffness of the columns, on the classical stability functions. Subsequently, comparative, and parametric studies conducted on several frames are presented for assessing the influence of geometry, loading, bracing, and support conditions of the frame columns on the value of the effective buckling length factor K. The results show that the formulas recommended by different approaches can give rather inaccurate values of K, especially in the case of asymmetric frames. The expressions used refer solely to local stiffness distributions, and not to the overall behavior of the structure.

A New Method for Lateral Force Calibration in Atomic Force Microscope (원자현미경(AFM)에서 마찰력 측정을 위한 새로운 보정 기술 연구)

  • Yoon Eui-Sung;Kim Hong Joon;Wang Fei;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.221-226
    • /
    • 2005
  • A new calibration method for exact measurement of friction force in atomic force microscope (AFM) is presented. A new conversion factor involves a contact factor affected by tip, cantilever and contact stiffness. Especially the effect of contact stiffness on the conversion factor between lateral force and lateral signal is considered. Conventional conversion factor and a new modified conversion factor were experimentally compared. Results showed that a new calibration method could minimize the effect of normal load on friction force and improve the conventional method. A new method could be applied to the specimens with different physical properties.