• Title/Summary/Keyword: stiffness distribution

Search Result 647, Processing Time 0.021 seconds

Distribution of strength and stiffness in asymmetric wall type system buildings considering foundation flexibility

  • Atefatdoost, Gh.R.;Shakib, H.;JavidSharifi, B.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.281-292
    • /
    • 2017
  • Architecture constraints in buildings may typically cause irregularities in the distribution of stiffness and mass and consequently causes non-compliance of centers of mass, stiffness and strength. Such buildings are known as asymmetric buildings the distribution of strength and stiffness is one of whose main challenges. This distribution is more complicated for concrete buildings with RC shear walls in which stiffness and strength are interdependent parameters. The flexibility under the foundation is another subject that can affect this distribution due to the variation of dynamic properties of the structure and its constituting elements. In this paper, it is attempted to achieve an appropriate distribution pattern by expressing the effects of foundation flexibility on the seismic demand of concrete shear walls and also evaluate the effects of this issue on strength and stiffness distribution among lateral force resistant elements. In order to understand the importance of flexibility in strength and stiffness distribution for an asymmetric building in different conditions of under-foundation flexibility, the assigned value to each of the walls is numerically calculated and eventually a procedure for strength and stiffness distribution dependencies on flexibility is provided.

Design of high stiffness and lightweight body for stiffness distribution ratio (강성 배분비를 괴려한 고강성 경량화 차체 설계)

  • Yang, Hee-Jong;Kim, Ki-Chang;Yim, Hong-Jae;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.562-566
    • /
    • 2006
  • Lightweight body can cause a low stiffness due to the decrease of panel thickness and reinforcing member. The other way, high stiffness body demands an increase of mass. Front pillar section area is decreased due to driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at side body structure. This paper will describe a process used to evaluate the stiffness distribution ratio based on research of strain energy analysis of the tip rotation method. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio. In this way the designer will be aided by a defined design guide and a set of supporting tool to help him work towards a good design

  • PDF

Design of High Stiffness and Lightweight Body for Stiffness Distribution Ratio (강성 배분비를 고려한 고강성화 경량화 차체 설계)

  • Yang, Hee-Jong;Kim, Ki-Chang;Lim, Si-Hyung;Kim, Chan-Mook;Yim, Hong-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.901-906
    • /
    • 2007
  • Lightweight body due to the decrease of panel thickness and reinforcing member might cause low stiffness. On the other hand, high stiffness body requires an increase of mass. Front pillar section area has been decreased for increasing the driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at a side body structure. This paper describes a process used to evaluate the stiffness distribution ratio based on strain energy. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio.

Buckling Analysis of Spherical Shells With Periodic Stiffness Distribution (주기적인 강성분포를 갖는 구형쉘의 좌굴해석)

  • Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.77-84
    • /
    • 2004
  • Researches on spherical shell which is most usually applied have been completed by many investigators already and generalized numerical formula was derived. But the existent researches are limited to those on spherical shell with isotropic or orthotropic roof stiffness, periodic distribution of roof stiffness that can be caused by spherical and latticed roof system is not considered. Therefore, the object of this study is to develop a structural analysis program to analyze spherical shells that have periodicity of roof stiffness distribution caused by latticed roof of large space structure, grasp buckling characteristics and behavior of structure.

  • PDF

Optimality Investigation of Bending Stiffness According to Particle Size Distribution (입자 크기의 구성 비율에 따른 휨강성 최적화 가능성의 탐구)

  • Song, Eun-Jeong;Lee, Young-Min;Moon, Hyungpil;Choi, Hyouk Ryeol;Koo, Ja Choon
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.332-338
    • /
    • 2017
  • As an interpretation of existing jamming effects, the main variables affecting the increase in stiffness due to jamming are known as system density, jamming density, pressure, and particulate temperature. The main variable, jamming density, is closely related to the distribution of particle size and contact properties such as particle shape and friction. However, the complexity of these variables makes it difficult to fully understand the mechanism of the jamming effect. In this paper, we focus on the jamming effects of particles that have more elastic properties than particles such as sand and coffee powder, which are commonly used as constituent particles of existing jamming, in order to reduce complicated factors such as temperature and concentrate on jamming effects based on elastic characteristics of particles. It was experimentally explored the possibility of increasing stiffness by mixing particles of different sizes rather than simply increasing the bending stiffness by controlling the particle size. Through simulations and experiments, we found a case where the stiffness of each particle size distribution is larger than the stiffness of each particle size.

A simplified analysis of super building structures with setback

  • Takabatake, Hideo;Ikarashi, Fumiya;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.43-64
    • /
    • 2011
  • One-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. The mechanical behavior of structures composed of distinct constituents of different stiffness such as coupled walls with opening is significantly governed by the local variation of stiffness. Furthermore, in structures with setback the distribution of the longitudinal stress behaves remarkable nonlinear behavior in the transverse-wise. So, the author proposed the two-dimensional rod theory as an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. This paper proposes how to deal with the two-dimensional rod theory for structures with setback. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures. The transverse-wise nonlinear distribution of the longitudinal stress due to the existence of setback is clarified to originate from the long distance from setback.

Theoretical Analyses on Actuator Stiffness and Structural Stiffness of Non-redundant and Redundant Symmetric 5R Parallel Mechanisms (비과구동, 과구동 대칭형 5R 병렬기구의 구동 및 구조 강성의 이론적 해석)

  • Jin, Sang-Rok;Kim, Jong-Won;Seo, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.971-977
    • /
    • 2012
  • Redundant actuated parallel kinematic machines (PKMs) have been widely researched to increase stiffness of PKMs. This paper presents theoretical analyses on the stiffness of non-redundant and redundant actuated PKM. Stiffness of each mechanism is defined by summation of actuator and structural stiffness; the actuator stiffness is determined from displacements of actuators, and the structural stiffness is determined from deformations of links by external forces. Calculated actuator and structural stiffness of non-redundant PKM show same distribution in entire workspace. On the contrary, the actuator and the structural stiffness of a redundant PKM has very different distribution in the workspace; so, we conclude the structural stiffness of redundant PKM should be considered to design the redundant PKM. The results can be used to design and analyze non-redundant and redundant PKMs.

Buckling Analysis of Spherical Shells With Periodic Stiffness Distribution According to Shape Parameter (강성분포가 주기성을 갖는 구형쉘의 형상계수에 따른 좌굴해석)

  • Park, Sang-Hoon;Suk, Chang-Mok;Jung, Hwan-Mok;Kwon, Young-Hwan
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.169-175
    • /
    • 2004
  • Researches on spherical shell which is most usually applied have been completed by many investigators already and generalized numerical formula was derived. But the existent researches are limited to those on spherical shell with isotropic or orthotropic roof stiffness, periodic distribution of roof stiffness that can be caused by spherical and latticed roof system is not considered. Therefore, this paper is to develop a structural analysis program to analyze spherical shells that have periodicity of roof stiffness distribution caused by latticed roof of large space structure, grasp buckling characteristics and behavior of structure.

  • PDF

Stiffness Analysis in a Redundantly Actuated Four-Bar Mechanism (잉여구동을 지닌 4절 기구에서의 강성효과에 대한 해석)

  • 이병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.846-855
    • /
    • 1994
  • An effective stiffness, analogous to that of a wound spring, can be created by antagonistic redundant actuation of general closed-chain mechanisms. The qualitative and quantitative characteristics of the effective stiffness are investigated through a Four-bar mechanism, and a load distribution method is introduced which simultaneously guarantees the required system motion and the effective stiffness of the Four-bar mechanism. Furthermore, a simulation is performed to understand the inter-relationship among the effective stiffness, the Four-bar geometry, and the actuation effort. Based on this analysis, the Four-bar synthesis problem for effective stiffness generation is discussed.

Analysis of Load Distribution Behavior in Vertical Extension Remodeling from Stiffness of Existing and Reinforcing Pile by Load Test (현장 재하시험을 통한 수직증축시 기존 말뚝과 보강 말뚝의 강성에 따른 하중분담거동 분석)

  • Kim, Seok-Jung;Wang, Cheng-Can;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.61-72
    • /
    • 2020
  • It is generally considered that differences of axial stiffness between exiting pile and reinforcing pile affect the load distribution ratio during vertical extension remodeling. But there are few cases to verify the effect of stiffness by field load test on load distribution ratio in Korea. In this paper, a series of load tests for micropiles were carried out to evaluate the effect of axial stiffness on the load distribution ratio. First, different types of micropiles were constructed so that conventional micropiles simulated existing piles and waveform micropiles simulated reinforcing piles. Secondly, load tests were performed to evaluate the stiffness of each piles. After then, the raft was installed to make a piled raft system and load tests were applied on foundation to verify the effect of axial stiffness on the load distribution ratio. The experimental results show that the stiffness of waveform micropiles were 2.5 times larger than that of conventional micropiles, and the load distribution ratio between existing and reinforcing piles was increased according to axial stiffness of piles.