• Title/Summary/Keyword: stiffness change

Search Result 871, Processing Time 0.029 seconds

Current Collection of Catenary System with Time-Varying Stiffness (시변강성 가선계의 집전성능)

  • 최연선
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.131-138
    • /
    • 2000
  • The design of current collection system of high speed train requires the fundamental understandings for the dynamic characteristics of catenary system and pantograph. The stiffness of catenary system of high speed train has the varying characteristics for the change of contact point with pantograph, since the supporting pole and hanger make the different boundary conditions for the up-down stiffness of a trolley wire. The variation of stiffness results in Mathiue equation, which characterizes the stability of the system. However, the two-term variation of the stiffness due to span length and hanger distance cannot be solved analytically. In this paper, the stiffness variations are calculated and the physical reasoning of linear model and one term Mathieu equation are reviewed. And the numerical analysis for the two-term variation of the stiffness is done for the several design parameters of pantograph.

  • PDF

A Study on the Behavior Properties of Residential-Commercial Building by Pushover Analysis (정적탄소성해석에 의한 복합구조물의 거동특성에 관한 연구)

  • 강병두;전대한;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.209-216
    • /
    • 2000
  • The purpose of this study is to investigate elasto-plastic behaviour and estimate ultimate resistance capacity of the residential-commercial building subjected to lateral force along the height of structure. Four types of residential-commercial building are chosen as analytical models and investigated by pushover analysis. Pushover analysis estimates initial elastic stiffness, post-yielding stiffness, and plastic hinges on each story of structures through three-dimensional nonlinear analysis program CANNY-99. Skeleton curve of bending stiffness model is bilinear, shear stiffness model is trilinear, and axial stiffness model is elastic. Skeleton curve of axial stiffness model has the axial compression and tension stiffness of reinforced concrete members. This study presents the change of inter story drift, story stiffness and hinge of story and member.

  • PDF

Analysis of a Structural Damage Detection Using Sensitivity Analysis (감도해석을 이용한 구조물의 손상위치 및 크기해석)

  • 이정윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.50-55
    • /
    • 2003
  • This study proposed the analysis of damage detection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The present approach allows the use of composite data which consist of eigenvalues and eigenvectors. The suggested method is applied to examples of a cantilever and 3 degree of freedom system by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

A study and experiment on the stabilization characteristic and the stiffness in Active Magnetic Bearing (자기베어링시스템 강성의 실험적 고찰을 통한 안정화 특성에 관한 연구)

  • 강성구;강종규;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.388-392
    • /
    • 2004
  • Due to the lack of stiffness and difficulties of control, it is hard to achieve well balanced magnetic levitation. In this paper, we analysis the current and position stiffness change according to bias current through experiment. Then, compensation equations were presented. After obtaining PD gain for each bias current and PD gain region through levitation experiment, we consider the characteristics.

  • PDF

Influence of the joint stiffness on the segment design (이음부 강성계수가 세그먼트 설계에 미치는 영향)

  • Choi, Woo-Yong;Park, Jong-Deok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.63-74
    • /
    • 2014
  • The lining of shield TBM tunnel is composed of segments, therefore segment joints are induced by connecting each segment. Segment joint is considered as joint stiffness in the design of TBM tunnel. Depending on the choice among the different stiffness equations, the joint stiffness values determined can be varied largely. Therefore, the influence of joint stiffness value on the design of segment lining should be verified. In this study, the joint stiffness values were determined firstly by using various equations and total change boundary was justified. Within the change boundary determined, the member forces were calculated by changing the joint stiffness through the numerical analysis and consequently the stability of segment lining was investigated by applying nominal strength. The results showed that the segment joint stiffness did not affect the design of segment lining largely.

Time-varying Stiffness of Catenary System and its Effect on Current Collection by Pantograph (가선계의 강성변화와 판토그래프의 집전성능)

  • 최연선
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.598-605
    • /
    • 2000
  • The design of a current collection system of high speed train requires the fundamental understandings fer the dynamic characteristics of a catenary system and pantograph. The stiffness of the catenary system of high speed train has the varying characteristics for the change of the contact point with a pantograph, since the supporting pole and hanger make the different boundary conditions for the updown stiffness of a trolley wire. The variation of stiffness results in Mathiue equation, which characterizes the stability of the system. However, the two terms variation of the stiffness due to span length and hanger distance cannot be solved analytically. In this paper, the stiffness variations are calculated, and the physical reasoning of linear model and one term Mathieu equation are reviewed. And the numerical analysis for the two term variation of the stiffness is done for the several design parameters of the pantograph.

  • PDF

Stiffness effect of the lamination pressing force for laminated rotor (적층된 로터에서 적층판 압착력의 강성 효과)

  • 김영춘;박철현;박희주;문태선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.565-568
    • /
    • 2002
  • A lot of rotating machines are being used in the industrial world and electric motor and generator take the most part of it. When it comes to the electric motor and generator, we can not help thinking about the eddy current because it brings a loss of electric and can be a important reason of the heat generation. To attenuate eddy current. laminated silicon steel sheets are being used in general. Especially, laminated rotor is being used for rotating part of the electric motor and generator and it decreases electrical loss and heat generation but we can be faced with another problem. In general, most of the motor and generator can be normally operated under 3600rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed. large scale and high precision in industrial world. The critical speed can be determined from the inertia and stiffness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape. lamination material and shape. insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method.

  • PDF

A Sensitivity Coefficient Analysis by the Change of Dynamic Characteristics of the Structure (구조물의 동특성 변화에 따른 감도계수 해석)

  • 이정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.682-686
    • /
    • 2002
  • This study predicts the sensitivity coefficient by the change of dynamic Characteristics of the Structure. The method is applied to examples of a cantilever and 3 degree of freedom lumped mass model by modifying the mass and stiffness. The predicted the sensitivity coefficient are in good agreement with these from the structural reanalysis using the modified mass and stiffness.

  • PDF

Prediction of Structural Modified Design Parameter due to the Change of Dynamic Characteristic (동특성변화에 따른 구조물의 변경된 설계파라미터 예측)

  • 이정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.191-196
    • /
    • 2004
  • This study proposed the analysis of mass position detection and modified stiffness due to the change of the mass and stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the mass. The predicted detection of mass positions and magnitudes are in good agrement with these from the structural reanalysis using the modified mass.

  • PDF

Buckling Analysis for Single Layer Latticed Domes considering the Change of Joint Rigidity (접합부 강성변화를 고려한 단층 래티스 돔의 좌굴해석)

  • 이후진;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.337-344
    • /
    • 2001
  • This paper is concerned with the change of joint rigidity in estimating the degree of semi-rigidity of connections and the buckling load in a single layer latticed dome. The estimations are based on information about the ratio for the rotational stiffness of the connection to the flexural stiffness of the member and the minimum eigenvalue of a structure for pinned, semi-rigid and completely rigid cases, respectively. Connection characteristics are reflected in the ratio control of joint rigidity for the DOFs to be related using the spring element by FEM.

  • PDF