• Title/Summary/Keyword: steroid receptor

Search Result 146, Processing Time 0.024 seconds

Cytochrome P-450 3A4 Proximal Promoter Activity by Histone Deacetylase Inhibitor in Hepg2 Cells

  • Kim, Ja-Young;Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.166-166
    • /
    • 2003
  • Cytochrome P-450 3A4 (CYP3A4) is major enzyme in human liver, the role of this is detoxification and metabolizing more than 50% clinical drugs in use. The transcription of CYP3A4 is regulated by the Pregnenolone X receptor (PXR),of which human form is Steroid and Xenobiotics receptor (SXR).(omitted)

  • PDF

Role of estrogen and RAS signaling in repeated implantation failure

  • Hong, Kwonho;Choi, Youngsok
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.225-229
    • /
    • 2018
  • In humans, hormonal regulation is crucial for the preparation of uterine environment leading to either successful implantation or menstrual cycle. Estrogen is a pivotal female steroid hormone that regulates the uterine dynamics along with progesterone in the estrous and menstrual cycles in humans. Estrogen signals act via nuclear estrogen receptor or membrane-bound receptor. The membrane-bound estrogen receptor plays a crucial role in the rapid response of estrogen in the uterine epithelium. Recently, RASD1 has received attention as a novel signal transducer of estrogen in various systems including female reproductive organs. In this review, we discuss the regulation of estrogen and RASD1 signaling in the uterus and also provide insights into RAS as a novel signaling molecule in repeated implantation failure.

Estrogen Receptor-α Mediates the Effects of Estradiol on Telomerase Activity in Human Mesenchymal Stem Cells

  • Cha, Young;Kwon, Su Jin;Seol, Wongi;Park, Kyung-Soon
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.454-458
    • /
    • 2008
  • Sex steroid hormone receptors play a central role in modulating telomerase activity, especially in cancer cells. However, information on the regulation of steroid hormone receptors and their distinct functions on telomerase activity within the mesenchymal stem cell are largely unavailable due to low telomerase activity in the cell. In this study, the effects of estrogen ($E_2$) treatment and function of estrogen receptor alpha ($ER{\alpha}$) and estrogen receptor beta ($ER{\beta}$) on telomerase activity were investigated in human mesenchymal stem cells (hMSCs). Telomerase activity and mRNA expression of the catalytic subunit of telomerase (hTERT) were upregulated by treatment of the cells with $E_2$. The protein concentration of $ER{\alpha}$ was also increased by $E_2$ treatment, and enhancement of $ER{\alpha}$ accumulation in the nucleus was clearly detected with immunocytochemistry. When $ER{\alpha}$ expression was reduced by siRNA transfection into hMSCs, the effect of $E_2$ on the induction of hTERT expression and telomerase activity was diminished. In contrast, the transient overexpression of $ER{\alpha}$ increased the effect of $E_2$ on the expression of hTERT mRNA. These findings indicate that the activation of hTERT expression and telomerase activity by $E_2$ in hMSCs depends on $ER{\alpha}$, but not on $ER{\beta}$.

Ginsenoside Rc and Re Stimulate c-Fos Expression in MCF-7 Human Breast Carcinoma Cells

  • Lee, Young-Joo;Jin, Young-Ran;Lim, Won-Chung;Ji, Sang-Mi;Cho, Jung-Yoon;Ban, Jae-Jun;Lee, Seung-Ki
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • We have found that ginsenoside Rc and Re induce c-fos in MCF-7 human breast carcinoma cells at both the mRNA and protein levels. However, neither ginsenoside activated the expression of reporter gene under the control of AP-1/TPA response elements. We have also examined the possibility that ginsenoside Rc and Re act by binding to intracellular steroid hormone receptors that act as transcriptional factors in the nucleus in inducing c-fos mRNA in MCF7 human breast carcinoma cells. However, ginsenoside Rc and Re did not bind to glucocorticoid, androgen, estrogen, or retinoic acid receptors as examined by the transcription activation of the luciferase reporter genes in CV-1 cells that were transiently transfected with the corresponding steroid hormone receptors and hormone responsive luciferase reporter plasmids. These data demonstrate that ginsenoside Rc and Re act via other transcription factors and not via estrogen receptor in c-Fos expression.

Non-disturbing of Decidual Response by Steroid Hormonal Complexes of Pig Testis

  • Yoo, Ja-Hyun;Byun, Jee-Hyun;Jeon, So-Ra;Lee, Dong-Mok;Chun, Tae-Hoon;Lee, Ki-Ho;Choi, In-Ho;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • Sex steroid hormones are key molecules to prepare the decidual response and their levels are important in this process. Imbalances of the levels of steroid hormones are cause of implantation failure and other diseases including physical weakness. Androgen replacement therapy or selective androgen receptor modulator are used to overcome various diseases but long-term use may cause of side effects. In previous report, it is suggested that the steroid hormonal complexes derived from pig enhance the proliferation of satellite cell. Therefore, to evaluate the possible usage of steroid hormonal complex derived from pig testis (tS-C), the effects of tS-C on uterine response were studied using the model of artificial decidua. tS-C did not disturb the rhythmical estrus cycle. Artificial-induced decidual response was normally induced in tS-C administered mice. The histological characters of the decidua of tS-C administered mice were not different from the vehicle. The expression patterns of molecular markers of decidua were not different between vehicle and tS-C group. Collectively these results suggested that tS-C does not disturb the uterine responsibility to the embryo. In addition, our results suggested that tS-C can be applied to overcome the various problems such as loss of muscle mass and anemia.

Expressional Evaluation of C/EBP Family, SREBP1, and Steroid Hormone Receptors in the Epididiymal Fat of Postnatally Developing Mouse

  • Lee, Yong-Seung;Lee, Ki-Ho
    • Development and Reproduction
    • /
    • v.26 no.2
    • /
    • pp.49-58
    • /
    • 2022
  • The differentiation and development of preadipocyte into mature adipocyte are regulated by transcription factors, such as CCAAT enhancer binding protein (Cebp) gene family and sterol regulatory element binding transcription factor 1 (Srebp1). Steroid hormones give influences on the development and function of adipocyte. The present research examined expression patterns of CCAAT enhancer binding protein alpha (Cebpa), CCAAT enhancer binding protein beta (Cebpb), CCAAT enhancer binding protein gamma (Cebpg), sterol regulatory element binding transcription factor 1 (Srebp1), androgen receptor (Ar), and estrogen receptors (Esr) among different epididymal fat parts during postnatal period by quantitative real-time polymerase chain reaction. In the distal epididymal fat, expression of Cebpa, Cebpb, Cebpg, Srebp1, Ar, and Esr2 was increased until 12 months of age, while expression of Esr1 was decreased at 5 months of age and was not detectable after 8 months of age. In the proximal epididymal fat, transcript levels of Cebps and Srebp1 were increased at 8 months of age, followed by decreases of Cebpb and Cebpg transcript levels at 12 months of age. An additional increase of Srebp1 expression was observed at 12 months of age. Expression of Ar and Esr2 were increased until 8 months of age, followed by a drop of Ar expression level at 12 months of age. Expression pattern of Esr1 was similar to that in the distal epididymal fat. In the tail epididymal fat, expression of Cebpa, Cebpg, Srebp1, Ar, and Esr2 was increased with age. Esr1 was not detectable at all. The highest level of Cebpb was observed at 8 months of age. These data suggest the possibility of developmental and functional differentiation among the epididymal fat parts.

Effect of Ethane 1,2-Dimethane Sulfonate(EDS) on the Expression of Steroid Hormone Receptors, $5{\alpha}$-reductase and Aromatase in the Rat Epididymis (흰쥐 부정소 내의 스테로이드 호르몬 수용체, $5{\alpha}$-reductase 그리고 Aromatase 발현에 미치는 EDS의 영향)

  • Son, Hyeok-Joon;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.187-193
    • /
    • 2007
  • Ethane 1,2-dimethane sulfonate(EDS), a Leydig cell specific toxicant, has been widely used to create the reversible testosterone withdrawal rat model. Though the maintenance of epididymal structure and function is highly dependent on the testosterone secreted from testis, its derivatives, dihydroxytestosterone(DHT) and estrogen, might have crucial roles. The aim of present study was to monitor the expression patterns of sex steroid receptors, cytochrome P450 aromatase(P450arom) and $5{\alpha}$-reductase in the rat epididymis up to 7 weeks after EDS injection. Adult male rats($350{\sim}400g$) were injected with a single does of EDS(75 mg/kg i.p.) and sacrificed on weeks 0, 1, 2, 3, 4, 5, 6 and 7. The transcriptional activities of the target genes were evaluated by semi-quantitative RT-PCRs. The transcript level of estrogen receptor alpha($ER{\alpha}$) in EDS group was significantly higher than control level on week 1(P<0.01). After week 2, there was no significant difference in $ER{\alpha}$ levels between EDS group and control. The transcript level of estrogen receptor beta($ER{\beta}$) in EDS group was significantly higher than control level on week 1(P<0.05), lowered on weeks 2 and 3(P<0.05 and P<0.01, respectively), fluctuated during weeks 4 and 6, and elevated on week 7(P<0.05). The androgen receptor (AR) message levels increased significantly week 2(P<0.01), then returned to control level on week 3. In contrast, expression of cytochrome P450 aromatase(P450arom) decreased sharply during weeks $1{\sim}3$(P<0.01 on weeks 1 and 2; P<0.05 on week 3), then went back to control level on week 4. The mRNA level of $5{\alpha}$-reductase type 2($5{\alpha}$-RT2) increased significantly on week 4(P<0.01), then returned to control level. The present study indicated that EDS administration could induce reversible alterations in the transcriptional activities of sex steroid hormone receptors and androgenconverting enzymes in rat epididymis. EDS injection model will be useful to clarify the regulation mechanism of mammalian epididymal physiology.

  • PDF

Expression of Luteinizing Hormone (LH) and Its Receptor Gene in Uterus from Cycling Rats (발정 주기중 흰쥐 자궁에서의 Luteinizing Hormone (LH)과 수용체 유전자 발현)

  • Kim, Sung-Rye;Lee, Sung-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.383-387
    • /
    • 1999
  • Objective: There is increasing evidence for the expression of rat in gene in several extrapituitary sites including testis and ovary. We also have demonstrated that the local LH expression in the rat epididymis and uterus, the major accessory sex organs in male and female reproductive system, respectively. Design: The present study was undertaken to elucidate whether the gene for LH receptor is expressed in rat uterus and whether the expressions of uterine LH and its receptor are differentially regulated during estrous cycle. Presence of the transcripts for rat LH receptor in the rat uterine tissue were confirmed by touchdown reverse transcription-polymerase chain reaction (RT-PCR). Results: In $LH{\beta}$ semi-quantitative RT-PCR, the highest expression level was shown in estrus stage. The level of ill receptor transcripts was also fluctuated during estrous cycle. In ovariectomized rats (OVX + Oil), the expressions of both uterine LH and LH-R were markedly reduced when compared to those from normal rats. Supplement with estradiol $17{\beta}$ to the ovariectomized rats (OVX + $E_2$) restored the expression levels of LH and its receptor to the levels in uteri from normal rats. Conclusion: Our findings indicated that 1) LH and its receptor gene are expressed in the rat uterus from cycling rats, 2) the expression of uterine LH and its receptor is mainly, if not all, under the control of ovarian sex steroid(s). These results suggested that the uterine LH may act as a local regulator with auto and/or paracrine manner, though the posibility that the pituitary LH may act directly on the regulation of uterine functions could not be discarded.

  • PDF

Expression of Progesterone Receptor Membrane Component 1 and 2 in the Mouse Gonads and Embryos (생쥐 생식소 및 배아의 프로게스테론 수용체 막성분 1과 2의 발현에 관한 연구)

  • Kim, Kyeoung-Hwa;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.21-29
    • /
    • 2007
  • Previously, we found progesterone receptor membrane component 2 (pgrmc2) was highly expressed in germinal vesicle (GV) stage oocytes. The present study was conducted to characterize the expression of pgrmc2, as well as pgrmc1, in the mouse gonads and embryos according to their developmental stages. We found that these membrane components were expressed in ovaries, testes, and embryos at various developmental stages in addition to oocytes. Progesterone-3-O-carboxymethyl oxime-BSA-fluorescein isothiocyanate (P4-BSA-FITC) was applied to visualize the presence of the progesterone receptor on mouse oocyte membrane, and we confirmed that immobilized progesterone is localized at surface of the oocyte. This is, at our knowledge, the first report regarding the expression of membrane component of progesterone receptor in the mouse oocytes, embryos, and gonads. The function and signal transduction pathway of progesterone receptor membrane components in oocytes requires further studies.

  • PDF

Co-expression and Sequence Determination of Estrogen Receptor Variant Messenger RNAs in Swine Uterus

  • Ying, C.;Chan, M.-A.;Cheng, W.T.K.;Hong, W.-F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1716-1721
    • /
    • 2003
  • Steroid hormones and their receptors play an important role in reproductive process. Estrogen is intimately involved with pregnancy and its function is mediated through the estrogen receptor which has been chosen as a candidate gene to study litter size in pigs. In this study, we report that two estrogen receptor variants, designated pER-1 and pER-2 were co-expressed in the uteri of normal cycling Lan-Yu pig (Sus vittatus; a small-ear miniature in Taiwan) with the pER-1 expression level appeared to be several times higher than that of pER-2. These receptor variants were isolated using reverse transcription-PCR from the pig uteri and their sequences were determined. The pER-1 and pER-2 sequences, which are homologous to those found in other mammalian estrogen receptors, encode putative proteins consisting of 574 and 486 amino acids, respectively. A deletion in exon I was identified in both sequences, with deletion lengths of 63 bp in pER-1 and 327 bp in pER-2. The deletion in pER-1 is internal to that in pER-2 and both deletions resulted in a truncation of the B domain, which confers the transactivating activity of estrogen receptor protein. This result describes the existence of estrogen receptor variants with a deletion in exon I and implies the possibility that physiological functioning of an estrogen receptor may not require the presence of an intact B domain.