• Title/Summary/Keyword: stereoscopic space

Search Result 79, Processing Time 0.021 seconds

Development of Full ice-cream cone model for HCME 3-D parameters

  • Na, Hyeonock;Moon, Yong-Jae;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2016
  • The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 26 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs are dominant over shallow ice-cream cone CMEs. Thus we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection speeds with the observed ones. We apply this model to 12 SOHO halo CMEs and compare the results with those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data.

  • PDF

Real-Time Stereoscopic Visualization of Very Large Volume Data on CAVE (CAVE상에서의 방대한 볼륨 데이타의 실시간 입체 영상 가시화)

  • 임무진;이중연;조민수;이상산;임인성
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.6
    • /
    • pp.679-691
    • /
    • 2002
  • Volume visualization is an important subarea of scientific visualization, and is concerned with techniques that are effectively used in generating meaningful and visual information from abstract and complex volume datasets, defined in three- or higher-dimensional space. It has been increasingly important in various fields including meteorology, medical science, and computational fluid dynamics, and so on. On the other hand, virtual reality is a research field focusing on various techniques that aid gaining experiences in virtual worlds with visual, auditory and tactile senses. In this paper, we have developed a visualization system for CAVE, an immersive 3D virtual environment system, which generates stereoscopic images from huge human volume datasets in real-time using an improved volume visualization technique. In order to complement the 3D texture-mapping based volume rendering methods, that easily slow down as data sizes increase, our system utilizes an image-based rendering technique to guarantee real-time performance. The system has been designed to offer a variety of user interface functionality for effective visualization. In this article, we present detailed description on our real-time stereoscopic visualization system, and show how the Visible Korean Human dataset is effectively visualized on CAVE.

2D-3D Conversion Method Based on Scene Space Reconstruction (장면의 공간 재구성 기법을 이용한 2D-3D 변환 방법)

  • Kim, Myungha;Hong, Hyunki
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.7
    • /
    • pp.1-9
    • /
    • 2014
  • Previous 2D-3D conversion methods to generate 3D stereo images from 2D sequence consist of labor-intensive procedures in their production pipelines. This paper presents an efficient 2D-3D conversion system based on scene structure reconstruction from image sequence. The proposed system reconstructs a scene space and produces 3D stereo images with texture re-projection. Experimental results show that the proposed method can generate precise 3D contents based on scene structure information. By using the proposed reconstruction tool, the stereographer can collaborate efficiently with workers in production pipeline for 3D contents production.

Estimation of CME 3-D parameters using a full ice-cream cone model

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2017
  • In space weather forecast, it is important to determine three-dimensional properties of CMEs. Using 29 limb CMEs, we examine which cone type is close to a CME three-dimensional structure. We find that most CMEs have near full ice-cream cone structure which is a symmetrical circular cone combined with a hemisphere. We develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model). In addition, we derive CME mean density (${\bar{\rho}_{CME}}={\frac{M_{total}}{V_{cone}}}$) based on the full ice-cream cone structure. For several limb events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. For the first time, we derive average CME densities as a function of CME height for several CMEs, which are well fitted to power-law functions. We will compare densities (front and average) of geoeffective CMEs and their corresponding ICME ones.

  • PDF

Collision detection algorithm by using mesh grouping (메쉬 그룹화를 이용한 충돌 검출 알고리즘)

  • Park, Jong-Seop;Jang, Tae-Jeong
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.199-204
    • /
    • 2018
  • In this paper, we propose a fast collision detection method for interacting with objects in virtual space. First, in the mesh grouping step, the entire space is divided into small spaces of a predetermined size, and the positions and sizes of the smallest basic stereoscopic shapes (cube or sphere) including all of the meshes belonging to each small space are determined. In the collision detection step, it is checked whether a haptic interface point (HIP) is included in a three-dimensional figure representing a group. When a collision with a specific three-dimensional figure is confirmed, searching is performed only for the meshes in the group to find a mesh on which a possible real collision with HIP occurred. The effectiveness of the proposed algorithm is verified by measuring and comparing the computation time of the proposed method with and without the proposed method.

VR media aesthetics due to the evolution of visual media (시각 미디어의 진화에 따른 VR 매체 미학)

  • Lee, Dong-Eun;Son, Chang-Min
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.633-649
    • /
    • 2017
  • The purpose of this study is to conceptualize the changing aspects of human freedom of observation and viewing as the visual media evolves from film to 3D stereoscopic film and VR. The purpose of this study is to conceptualize the aspect of freedom and viewing aspect from the viewpoint of genealogy. In addition, I will identify the media aesthetic characteristics of VR and identify the identity and ontology of VR. Media has evolved around the most artificial sense of human being. There is a third visual space called screen at the center of all the reproduction devices centering on visual media such as painting, film, television, and computer. In particular, movies, television, and video screens, which are media that reproduce moving images, pursue perfect fantasy and visual satisfaction while controlling the movement of the audience. A mobilized virtual gaze was secured on the assumption of the floating nature of the so-called viewers. The audience sees a cinematic illusion with a view while seated in a fixed seat in a floating posture. They accept passive, passive, and passively without a doubt the fantasy world beyond the screen. But with the advent of digital paradigm, the evolution of visual media creates a big change in the tradition of reproduction media. 3D stereoscopic film predicted the extinction of the fourth wall, the fourth wall. The audience is no longer sitting in a fixed seat and only staring at the front. The Z-axis appearance of the 3D stereoscopic image reorganizes the space of the story. The viewer's gaze also extends from 'front' to 'top, bottom, left, right' and even 'front and back'. It also transforms the passive audience into an active, interactive, and experiential subject by placing viewers between images. Going one step further, the visual media, which entered the VR era, give freedom to the body of the captive audience. VR secures the possibility of movement of visitors and simultaneously coexists with virtual space and physical space. Therefore, the audience of the VR contents acquires an integrated identity on the premise of participation and movement. It is not a so-called representation but a perfection of the aesthetic system by reconstructing the space of fantasy while inheriting the simulation tradition of the screen.

Stereoscopic Depth from 3D Contents with Various Disparity (화면 시차로부터 지각되는 3D 컨텐츠의 입체시 깊이)

  • Kham, Keetaek
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.76-86
    • /
    • 2016
  • This study was investigated whether the perceived depth was changed depending on the measurement methods. In the method of direct comparison, virtual object with one of the various binocular disparities was presented in the frontal space with LEDs which were used for depth estimation for a binocular stimulus, while in the method of indirect comparison, visual object was presented in the frontal space but the LEDs were placed rightward at the angle of 45 degree from the mid-sagittal line. In these experimental setup, the depth of binocular stimulus was directly matched that of LED in direct comparison condition. In indirect comparison condition, however, observer estimated the depth of binocular stimulus, turned one's head rightward to the array of LEDs and turned on the LED which was supposed to be the same depth as binocular stimulus. Additionally, it was investigated whether the perceived depth was different depending on observer's stereo acuity. The results showed that perceived depths measured in the direct comparison were more similar to the depth predicted from geometry than those in the indirect comparison, and that the perceived depths from observers with high stereo acuity were similar to the predicted depth from geometry those from observers with low stereo acuity. These results indicated that stereoscopic depths of the binocular stimuli would vivid and compelling when binocular stimuli was simultaneously presented with real objects in the same visual space, like a mixed reality.

Comparison of the Size of objects in the Virtual Reality Space and real space (가상현실 공간상에서 물체의 크기와 실제 크기간의 비교연구)

  • Kim, Yun-Jung
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.383-398
    • /
    • 2017
  • Virtual Reality contents are being used as media in various fields. In order for the virtual reality contents to be realistic, the scale of the objects in the virtual reality must be the same as the actual size, and the user must feel the same size. However, even if the size of the character in the virtual reality space is made equal to the size in comparison with the size of the character in the reality, the distortion of the size can occur when the user looks at the object in the image with the HMD. In this paper, I investigate the requirements related to size in virtual reality, and try to find out what difference these requirements have in virtual reality and how the difference affects users. Experiments and surveys to compare the size of objects in virtual reality space and the size of objects in real space were conducted to investigate how scale distortion occurs at distant and near places. I hope that this paper will be a useful research for virtual reality developers.

Intermediate Image Generation based on Disparity Path Search in Block of Disparity Space Image (시차공간영상에서의 구간별 시차 경로 탐색을 이용한 중간 영상 생성)

  • Kwak, Ji-Hyun;Kim, Kyung-Tae
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.9-16
    • /
    • 2008
  • In this paper, we present an algorithm for synthesizing intermediate view image from a stereoscopic pair of images. An image of multiview is need for people in order to easily recognize 3D image. However, if many cameras are use for that, not only does system get more complicated but also transmission rating cause a big trouble. Hence, stereo images are photograph and issue on the sending side and algorithm to generate several intermediate view image is able to be use on the receiving side. The proposed method is based on disparity space image. First of all, disparity space image that is depicted by the gap of pixel followed by disparity of stereo image is generated. Disparity map is made by utilizing disparity space image for searching for optimal disparity path then eventual intermediate view image is generated after occlusion region which does not match is processed. Experimental results illustrate the performance of the proposed technique and we obtained a high quality image of more than 30 dB PSNR.

A New Watermarking Algorithm for 3D Stereoscopic Image based on Depth and texture images (깊이 및 텍스쳐 영상 기반의 3D 입체 영상을 위한 워터마킹 알고리즘)

  • Seo, Young-Ho;Kim, Bo-Ra;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.551-561
    • /
    • 2014
  • Since the depth and texture images have been widely used for generating 3-dimensional stereoscopic image, the security of them have been focused. In this paper, we propose a new watermarking technique for copyright of stereo and multiview images which is generated in an arbitrary viewpoint by depth and texture image. After the mark space is selected for preserving watermark through DIBR (depth-image-based rendering) process which uses 3D warping, the texture image is transformed to the frequency coefficient using 2D DCT (discrete cosine transform). Some parts of them are quantized, which is the corresponding process to watermarking. The embedded watermark is not conformed by eyes, so we identified the invisibility of the proposed method. In case of appling attacks of general image process, we also identified the robustness of it.