• Title/Summary/Keyword: stereoscopic quality

Search Result 109, Processing Time 0.064 seconds

Intermediate Image Generation based on Disparity Path Search in Block of Disparity Space Image (시차공간영상에서의 구간별 시차 경로 탐색을 이용한 중간 영상 생성)

  • Kwak, Ji-Hyun;Kim, Kyung-Tae
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.9-16
    • /
    • 2008
  • In this paper, we present an algorithm for synthesizing intermediate view image from a stereoscopic pair of images. An image of multiview is need for people in order to easily recognize 3D image. However, if many cameras are use for that, not only does system get more complicated but also transmission rating cause a big trouble. Hence, stereo images are photograph and issue on the sending side and algorithm to generate several intermediate view image is able to be use on the receiving side. The proposed method is based on disparity space image. First of all, disparity space image that is depicted by the gap of pixel followed by disparity of stereo image is generated. Disparity map is made by utilizing disparity space image for searching for optimal disparity path then eventual intermediate view image is generated after occlusion region which does not match is processed. Experimental results illustrate the performance of the proposed technique and we obtained a high quality image of more than 30 dB PSNR.

Rigorous Modeling of the First Generation of the Reconnaissance Satellite Imagery

  • Shin, Sung-Woong;Schenk, Tony
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.223-233
    • /
    • 2008
  • In the mid 90's, the U.S. government released images acquired by the first generation of photo reconnaissance satellite missions between 1960 and 1972. The Declassified Intelligent Satellite Photographs (DISP) from the Corona mission are of high quality with an astounding ground resolution of about 2 m. The KH-4A panoramic camera system employed a scan angle of $70^{\circ}$ that produces film strips with a dimension of $55\;mm\;{\times}\;757\;mm$. Since GPS/INS did not exist at the time of data acquisition, the exterior orientation must be established in the traditional way by using control information and the interior orientation of the camera. Detailed information about the camera is not available, however. For reconstructing points in object space from DISP imagery to an accuracy that is comparable to high resolution (a few meters), a precise camera model is essential. This paper is concerned with the derivation of a rigorous mathematical model for the KH-4A/B panoramic camera. The proposed model is compared with generic sensor models, such as affine transformation and rational functions. The paper concludes with experimental results concerning the precision of reconstructed points in object space. The rigorous mathematical panoramic camera model for the KH-4A camera system is based on extended collinearity equations assuming that the satellite trajectory during one scan is smooth and the attitude remains unchanged. As a result, the collinearity equations express the perspective center as a function of the scan time. With the known satellite velocity this will translate into a shift along-track. Therefore, the exterior orientation contains seven parameters to be estimated. The reconstruction of object points can now be performed with the exterior orientation parameters, either by intersecting bundle rays with a known surface or by using the stereoscopic KH-4A arrangement with fore and aft cameras mounted an angle of $30^{\circ}$.

The study of stereoscopic editing process with applying depth information (깊이정보를 활용한 입체 편집 프로세스 연구)

  • Baek, Kwang-Ho;Kim, Min-Seo;Han, Myung-Hee
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.225-233
    • /
    • 2012
  • The 3D stereoscopic image contents have been emerging as the blue chip of the contents market of the next generation since the . However, all the 3D contents created commercially in the country have failed to enter box office. It is because the quality of Korean 3D contents is much lower than that of overseas contents and also current 3D post production process is based on 2D. Considering all these facts, the 3D editing process has connection with the quality of contents. The current 3D editing processes of the production case of are using the way that edits with the system on basis of 2D, followed by checking with 3D display system and modifying, if there are any problems. In order to improve those conditions, I suggest that the 3D editing process contain more objectivity by visualizing the depth data applied in some composition work such as Disparity map, Depth map, and the current 3D editing process. The proposed process has been used in the music drama , comparing with those of the film . The 3D values could be checked among cuts which have been changed a lot since those of , while the 3D value of drew an equal result in general. Since the current process is based on an artist's subjective sense of 3D, it could be changed according to the condition and state of the artist. Furthermore, it is impossible for us to predict the positive range, so it is apprehended that the cubic effect of space might be perverted by showing each different 3D value according to cuts in the same space or a limited space. On the other hand, the objective 3D editing by applying the visualization of depth data can adjust itself to the cubic effect of the same space and the whole content equally, which will enrich the 3D contents. It will even be able to solve some problems such as distortion of cubic effect and visual fatigue, etc.

Evaluating the Economic Value of 3D Broadcasting Services based on the Potential Market Demand (3D 방송 서비스의 소비자 수용도에 근거한 경제적 가치평가)

  • Kwon Jung-A;Byun Sang-Kyu;Jahng Jae-Houk
    • Journal of Korea Technology Innovation Society
    • /
    • v.9 no.1
    • /
    • pp.131-148
    • /
    • 2006
  • With the rapid penetration of digital technology In recent years, there are growing expectations that many new services will soon become available. One of the new services is 3Dimension(3D) services, because our concern is concentrated on the quality of information that exceeds the digitalization of information. A stereoscopic technique for generating 3D images is contributed to raise the quality of Information and Communication Technology(ICT) service and is extensively applied to various fields. So 3D services, based on that technique, are expected to create a new market for ICT industry and provide significant benefits to consumers. The purpose of this paper is to analyze the consumer preference and evaluate the economic value of the 3D broadcasting service, so it provides propriety of the 3D technology development for market planners and product developers who need to assess the market potential of a product that is not yet available for actual test marketing. And it is useful for decision-makers in considering the provision of 3D services. In this paper, the gang survey was conducted to understand consumer preference of 3D services. And it attempts to apply the contingent valuation method(CVM) to measuring the willingness to Pay(WTP) for the 3D broadcasting service and analyzing the determinants of the WTP.

  • PDF

Region Selective Transmission Method of MMT based 3D Point Cloud Content (MMT 기반 3차원 포인트 클라우드 콘텐츠의 영역 선별적 전송 방안)

  • Kim, Doohwan;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.25-35
    • /
    • 2020
  • Recently, the development of image processing technology, as well as hardware performance, has been continuing the research on 3D point processing technology that provides users with free viewing angle and stereoscopic effect in various fields. Point cloud technology, which is a type of representation of 3D point, has attracted attention in various fields because it can acquired/expressed point precisely. However, since Hundreds of thousands, millions of point are required to represent one 3D point cloud content, there is a disadvantage that a larger amount of storage space is required than a conventional 2D content. For this reason, the MPEG (Moving Picture Experts Group), an international standardization organization, is continuing to research how to efficiently compress, store, and transmit 3D point cloud content to users. In this paper, a V-PCC bitstream generated by a V-PCC (Video-based Point Cloud Compression) encoder proposed by the MPEG-I (Immersive) group is composed of an MPU (Media Processing Unit) defined by the MMT. In addition, by extending the signaling message defined in the MMT standard, a parameter for a segmented transmission method of the 3D point cloud content by area and quality parameters considering the characteristic of the 3D point cloud content, so that the quality parameters can be selectively determined according to the user's request. Finally, in this paper, we verify the result through design/implementation of the verification platform based on the proposed technology.

Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map (깊이맵 업샘플링을 이용한 객관적 메트릭과 3D 평가의 비교)

  • Mahmoudpour, Saeed;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.204-214
    • /
    • 2015
  • Depth map upsampling is an approach to increase the spatial resolution of depth maps obtained from a depth camera. Depth map quality is closely related to 3D perception of stereoscopic image, multi-view image and holography. In general, the performance of upsampled depth map is evaluated by PSNR (Peak Signal to Noise Ratio). On the other hand, time-consuming 3D subjective tests requiring human subjects are carried out for examining the 3D perception as well as visual fatigue for 3D contents. Therefore, if an objective metric is closely correlated with a subjective test, the latter can be replaced by the objective metric. For this, this paper proposes a best metric by investigating the relationship between diverse objective metrics and 3D subjective tests. Diverse reference and no-reference metrics are adopted to evaluate the performance of upsampled depth maps. The subjective test is performed based on DSCQS test. From the utilization and analysis of three kinds of correlations, we validated that SSIM and Edge-PSNR can replace the subjective test.

A Study on Virtual Assembly Simulation Using Virtual Reality Technology (가상현실 기술을 이용한 가상 조립 시뮬레이션에 대한 연구)

  • Kim, Yong-Wan;Park, Jin-Ah
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1715-1727
    • /
    • 2010
  • Although a hand haptic interaction which provides direct and natural sensation is the most natural way of interacting with VR environment, the hand haptic interaction has still limitations with respect to the complexity of articulated hand and related hardware capabilities. Particularly, virtual assembly simulation which refers to the verification process of digital mockup in product development lifecycle is one of the most challenging topics in virtual reality applications. However, hand haptic interaction is considered as a big obstacle, because difficulty initial grasping and non-dextrous manipulation remain as unsolved problems. In this paper, we propose that common hand haptic interactions involves two separate stages with different aspects. We present the hand haptic interaction method enables us to stably grasp a virtual object at initial grasping and delicately manipulate an object at task operating by one's intention. Therefore, proposed method provides the robustness using grasping quality and dextrous manipulation using physically simulation. We conducted experiments to evaluate the effectiveness of our proposed method under different display environments -monoscopic and stereoscopic. From 2-way ANOVA test, we show that the proposed method satisfies two aspects of hand haptic interaction. Finally, we demonstrated an actual application of various assembly simulation for relatively complex models.

Fast Generation of Intermediate View Image Using GPGPU-Based Disparity Increment Method (GPGPU 기반의 변위증분 방법을 이용한 중간시점 고속 생성)

  • Koo, Ja-Myung;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1908-1918
    • /
    • 2013
  • Free-view, auto-stereoscopic video service is a next generation broadcasting system which offers a three-dimensional video, images of the various point are needed. This paper proposes a method that parallelizes the algorithm for arbitrary intermediate view-point image fast generation and make it faster using General Propose Graphic Processing Unit(GPGPU) with help of the Compute Unified Device Architecture(CUDA). It uses a parallelized stereo-matching method between the leftmost and the rightmost depth images to obtain disparity information and It use data calculated disparity increment per depth value. The disparity increment is used to find the location in the intermediate view-point image for each depth in the given images. Then, It is eliminate to disocclusions complement each other and remaining holes are filled image using hole-filling method and to get the final intermediate view-point image. The proposed method was implemented and applied to several test sequences. The results revealed that the quality of the generated intermediate view-point image corresponds to 30.47dB of PSNR in average and it takes about 38 frames per second to generate a Full HD intermediate view-point image.

A Bio-Edutainment System to Virus-Vaccine Discovery based on Collaborative Molecular in Real-Time with VR

  • Park, Sung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.109-117
    • /
    • 2020
  • An edutainment system aims to help learners to recognize problems effectively, grasp and classify important information needed to solve the problems and convey the contents of what they have learned. Edutainment contents can be usefully applied to education and training in the both scientific and industrial areas. Our present work proposes an edutainment system that can be applied to a drug discovery process including virtual screening by using intuitive multi-modal interfaces. In this system, a stereoscopic monitor is used to make three-dimensional (3D) macro-molecular images, with supporting multi-modal interfaces to manipulate 3D models of molecular structures effectively. In this paper, our system can easily solve a docking simulation function, which is one of important virtual drug screening methods, by applying gaming factors. The level-up concept is implemented to realize a bio-game approach, in which the gaming factor depends on number of objects and users. The quality of the proposed system is evaluated with performance comparison in terms of a finishing time of a drug docking process to screen new inhibitors against target proteins of human immunodeficiency virus (HIV) in an e-drug discovery process.