• Title/Summary/Keyword: stereoscopic camera

Search Result 155, Processing Time 0.021 seconds

Autostereoscopic 3D display system with moving parallax barrier and eye-tracking (이동형 패럴랙스배리어와 시점 추적을 이용한 3D 디스플레이 시스템)

  • Chae, Ho-Byung;Ryu, Young-Roc;Lee, Gang-Sung;Lee, Seung-Hyun
    • Journal of Broadcast Engineering
    • /
    • v.14 no.4
    • /
    • pp.419-427
    • /
    • 2009
  • We present a novel head tracking system for stereoscopic displays that ensures the viewer has a high degree of movement. The tracker is capable of segmenting the viewer from background objects using their relative distance. A depth camera using TOF(Time-Of-Flight) is used to generate a key signal for eye tracking application. A method of the moving parallax barrier is also introduced to supplement a disadvantage of the fixed parallax barrier that provides observation at the specific locations.

Interactive 3D Integral Imaging System using Single Camera (하나의 카메라를 이용한 인터렉티스 3D 집적 영상 시스템)

  • Shin, Dong-Hak;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.829-835
    • /
    • 2008
  • Recently, 3D integral imaging system, which is well known as an auto-stereoscopic 3D display method, has been gaining great attention amongst researchers. The integral imaging is a promising 3D display technology since it is able to deliver continuous viewing points, full parallax, and full color view to the observers in space. In this paper, we propose a novel interactive 3D integral imaging system using a single camera. The user interface is implemented by adding a camera in the conventional integral imaging system. To show the possibility of the proposed system, we implement the optical setup and present the preliminary results. To our best knowledge, this is the first time to study an interactive 3D integral imaging.

A Method for Estimating a Distance Using the Stereo Zoom Lens Module (양안 줌렌즈를 이용한 물체의 거리추정)

  • Hwang, Eun-Seop;Kim, Nam;Kwon, Ki-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.537-543
    • /
    • 2006
  • A method of estimating the distance using single zoom camera limits a distance range(only optical axis) in field of view. So, in this paper, we propose a method of estimating the distance information in Stereoscopic display using the stereo zoom lens module for estimating the distance in the wide range. The binocular stereo zoom lens system is composed using a horizontal moving camera module. The left and right images are acquired in polarized stereo monitor for getting the conversion and estimating a distance. The error distance is under 10mm which has difference between optically a traced distance and an estimated distance in left and right range $(0mm{\sim}500mm)$ at center. This presents the system using a function of the zoom and conversion has more precise distance information than that of conversion control. Also, a method of estimating a distance from horizontal moving camera is more precise value than that from toe-in camera by comparing the error distance of the two camera methods.

Comparison of 3D Space Perception for the Stereoscopic AR Holography (스테레오 증강현실 홀로그래피에서의 삼차원 공간감 비교)

  • Kim, Minju;Wohn, Kwangyun
    • Journal of the HCI Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • Recently, the use of floating hologram has increased in many different aspects, such as exhibitions, education, advertisements, and so on. Especially, the floating hologram that makes use of half-mirror is widely used. Nevertheless, half-mirror, unfortunately, cannot lead users to the perfect three dimensional hologram experience. Even though it can make the vision look to be up on the air, it does not have the capacity to display itself up on the air, which is the ultimate goal of hologram. In addition, it looks inconsistent when a real object is located behind the half-mirror in order to show the convergence of the two (object and the half-mirror). In this paper, we did the study on comparison of 3D space perception for the stereoscopic AR holography. At first, we applied stereoscopic technology to the half-mirror hologram system for the accurate and realistic AR environment. Then, the users can feel as if the real 3D object behind half-mirror and the reflected virtual image are converged much better in the 3D space. Furthermore, by using depth camera, the location and direction of graphics can be controlled to change depending on the user's point of view. This is the effective way to produce augmented stereoscopic images simply and accurately through half-mirror film without any additional devices. What we saw from the user test were applying 3D images and user interaction leads the users to have 3D spatial awareness and realism more effectively and accurately.

  • PDF

Camera and Receiver Development for 3D HDTV Broadcasting (3차원 고화질TV 방송용 카메라 및 수신기 개발)

  • 이광순;허남호;안충현
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.211-218
    • /
    • 2002
  • This paper introduces the HD 3DTV camera and 3DTV receiver that are compatible with the ATSC HDTV broadcasting system. The developed 3DTV camera is based on stereoscopic techniques, and it has control function to control both left and right zoom lens simultaneously and to control the vergence. Moreover, in order to control the vergence manually and to eliminate the synchronization problem of the both images, the 3DTV camera has the 3DTV video multiplexing function to combine the left and right images into the single image. The developed 3DTV signal, and it has the various analog/digital interfaces. The performance of the developed system is confirmed by shooting the selected soccer game in 2002 FIFA KOREA/JAPANTM World Cup and by broadcasting the match. The HD 3DTV camera and receiver will be applied to the 3DTV industries such as 3D movie, 3D game, 3D image processing, 3DTV broadcasting system, and so on.

Key-factors in the Modified Parallel Type to Convert Toed-in Type Stereoscopy (수렴타입의 스테레오 영상 획득방법을 모사하는 변형평행타입에서의 주요인자의 정의)

  • Lee, Kwang-Hoon;Kim, Dong-Wook;Kim, Sung-Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.276-286
    • /
    • 2008
  • The representative alignments for taking a stereo image by using a stereoscopic camera are the toed-in and the parallel alignment. In this paper, we tried to find important factors in the process that captures the stereo image by modifying parallel type 3D camera alignment to take the same object information as, for instance, when toed-in type was used. The modified parallel type 3D camera has merits in both types. As a result, three important factors are found by simulation to be inter-camera distance, field of view and convergence angle for both types. And the change of the convergence angle is known to be the most important factor at the stereo fusible area in processing. The effective ranges of these factors to simulate perfectly toed-in type by modified parallel type are strongly dependent on a user's circumstances such as mobile, official, theater and so on. Additionally, the error of the simulation is reduced when the focal length of the stereo camera is short and the convergence angle becomes smaller.

Three-Dimensional Flow Visualization for the Steady and Pulsatile Flows in a Branching Model using the High-Resolution PIV System

  • Suh, Sang-Ho;Roh, Hyung-Woon
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.2
    • /
    • pp.27-32
    • /
    • 2004
  • The objective of the present study is to visualize the steady and pulsatile flow fields in a branching model by using a high-resolution PIV system. A bifurcated flow system was built for the experiments in the steady and pulsatile flows. Harvard pulsatile pump was used to generate the pulsatile velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow fields. CCD cameras($1K{\times}1K$(high resolution camera) and $640{\times}480$(low resolution camera)) captured two consecutive particle images at once for the image processing of several cross sections on the flow system. The range validation method and the area interpolation method were used to obtain the final velocity vectors with high accuracy. The results of the image processing clearly showed the recirculation zones and the formation of the paired secondary flows from the distal to the apex of the branch flow in the bifurcated model. The results also indicated that the particle velocities at the inner wall moved faster than the velocities at the outer wall due to the inertial force effects and the helical motions generated in the branch flows as the flow proceeded toward the outer wall. Even though the PIV images from the high resolution camera were closer to the simulation results than the images from the low resolution camera at some locations, both results of the PIV experiments from the two cameras generally agreed quite well with the results from the computer simulations. Therefore, instead of using the expensive stereoscopic PIV or 3D PIV system, the three-dimensional flow fields in a bifurcated model could be easily and exactly investigated by this study.

  • PDF

Image Synthesis and Multiview Image Generation using Control of Layer-based Depth Image (레이어 기반의 깊이영상 조절을 이용한 영상 합성 및 다시점 영상 생성)

  • Seo, Young-Ho;Yang, Jung-Mo;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1704-1713
    • /
    • 2011
  • This paper proposes a method to generate multiview images which use a synthesized image consisting of layered objects. The camera system which consists of a depth camera and a RGB camera is used in capturing objects and extracts 3-dimensional information. Considering the position and distance of the synthesizing image, the objects are synthesized into a layered image. The synthesized image is spaned to multiview images by using multiview generation tools. In this paper, we synthesized two images which consist of objects and human and the multiview images which have 37 view points were generated by using the synthesized images.

Method of Measuring Color Difference Between Images using Corresponding Points and Histograms (대응점 및 히스토그램을 이용한 영상 간의 컬러 차이 측정 기법)

  • Hwang, Young-Bae;Kim, Je-Woo;Choi, Byeong-Ho
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.305-315
    • /
    • 2012
  • Color correction between two or multiple images is very crucial for the development of subsequent algorithms and stereoscopic 3D camera system. Even though various color correction methods are proposed recently, there are few methods for measuring the performance of these methods. In addition, when two images have view variation by camera positions, previous methods for the performance measurement may not be appropriate. In this paper, we propose a method of measuring color difference between corresponding images for color correction. This method finds matching points that have the same colors between two scenes to consider the view variation by correspondence searches. Then, we calculate statistics from neighbor regions of these matching points to measure color difference. From this approach, we can consider misalignment of corresponding points contrary to conventional geometric transformation by a single homography. To handle the case that matching points cannot cover the whole regions, we calculate statistics of color difference from the whole image regions. Finally, the color difference is computed by the weighted summation between correspondence based and the whole region based approaches. This weight is determined by calculating the ratio of occupying regions by correspondence based color comparison.

Accuracy Assessment on the Stereoscope based Digital Mapping Using Unmanned Aircraft Vehicle Image (무인항공기 영상을 이용한 입체시기반 수치도화 정확도 평가)

  • Yun, Kong-Hyun;Kim, Deok-In;Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • RIn this research, digital elevation models, true-ortho image and 3-dimensional digital complied data was generated and evaluated using unmanned aircraft vehicle stereoscopic images by applying photogrammetric principles. In order to implement stereoscopic vision, digital Photogrammetric Workstation should be used necessarily. For conducting this, in this study GEOMAPPER 1.0 is used. That was developed by the Ministry of Trade, Industry and Energy. To realize stereoscopic vision using two overlapping images of the unmanned aerial vehicle, the interior and exterior orientation parameters should be calculated. Especially lens distortion of non-metric camera must be accurately compensated for stereoscope. In this work. photogrammetric orientation process was conducted using commercial Software, PhotoScan 1.4. Fixed wing KRobotics KD-2 was used for the acquisition of UAV images. True-ortho photo was generated and digital topographic map was partially produced. Finally, we presented error analysis on the generated digital complied map. As the results, it is confirmed that the production of digital terrain map with a scale 1:2,500~1:3,000 is available using stereoscope method.