• Title/Summary/Keyword: stereo matching

Search Result 611, Processing Time 0.021 seconds

Stereo matching algorithm based on systolic array architecture using edges and pixel data (에지 및 픽셀 데이터를 이용한 어레이구조의 스테레오 매칭 알고리즘)

  • Jung, Woo-Young;Park, Sung-Chan;Jung, Hong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.777-780
    • /
    • 2003
  • We have tried to create a vision system like human eye for a long time. We have obtained some distinguished results through many studies. Stereo vision is the most similar to human eye among those. This is the process of recreating 3-D spatial information from a pair of 2-D images. In this paper, we have designed a stereo matching algorithm based on systolic array architecture using edges and pixel data. This is more advanced vision system that improves some problems of previous stereo vision systems. This decreases noise and improves matching rate using edges and pixel data and also improves processing speed using high integration one chip FPGA and compact modules. We can apply this to robot vision and automatic control vehicles and artificial satellites.

  • PDF

IKONOS Stereo Matching with Land Cover Map for DEM Generation

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Park, Byung-Guk;Han, Dong-Yeob
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.580-583
    • /
    • 2007
  • Various matching methods have been introduced by investigators to improve digital elevation model (DEM) accuracy of satellite imagery. This study proposed an area-based matching method according to land cover property using correlation coefficient of pixel brightness value between the two images for DEM generation from IKONOS stereo imagery. For this, matching line (where "matching line" implies straight line that is approximated to complex nonlinear epipolar geometry) is established by exterior orientation parameters to minimize search area. The matching is carried out based on this line. Land cover classes are divided off into water, urban land, forest and agricultural land. Matching size is selected using a correlation-coefficient image in the four areas. The selected sizes are $81{\times}81$ pixels window, $21{\times}21$ pixels window, $119{\times}119$ pixels window and $51{\times}51$ pixels window in the water area, urban land, forest land and agricultural land, respectively. And hence, DEM is generated from IKONOS stereo imagery using the selected matching sizes and land cover map on the four types.

  • PDF

An Evaluation and Combination of Noise Reduction Filtering and Edge Detection Filtering for the Feature Element Selection in Stereo Matching (스테레오 정합 특징 요소 선택을 위한 잡음 감소 필터링과 에지 검출 필터링의 성능 평가와 결합)

  • Moon, Chang-Gi;Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.273-285
    • /
    • 2007
  • Most stereo matching methods use intensity values in small image patches to measure the correspondence between two points. If the noisy pixels are used in computing the corresponding point, the matching performance becomes low. For this reason, the noise plays a critical role in determining the matching performance. In this paper, we propose a method for combining intensity and edge filters robust to the noise in order to improve the performance of stereo matching using high resolution satellite imagery. We used intensity filters such as Mean, Median, Midpoint and Gaussian filter and edge filters such as Gradient, Roberts, Prewitt, Sobel and Laplacian filter. To evaluate the performance of intensity and edge filters, experiments were carried out on both synthetic images and satellite images with uniform or gaussian noise. Then each filter was ranked based on its performance. Among the intensity and edge filters, Median and Sobel filter showed best performance while Midpoint and Laplacian filter showed worst result. We used Ikonos satellite stereo imagery in the experiments and the matching method using Median and Sobel filter showed better matching results than other filter combinations.

Analysis of Quantization Error in Stereo Vision (스테레오 비젼의 양자화 오차분석)

  • 김동현;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.54-63
    • /
    • 1993
  • Quantization error, generated by the quantization process of an image, is inherent in computer vision. Because, especially in stereo vision, the quantization error in a 2-D image results in position errors in the reconstructed 3-D scene, it is necessary to analyze it mathematically. In this paper, the analysis of the probability density function (pdf) of quantization error for a line-based stereo matching scheme is presented. We show that the theoretical pdf of quantization error in the reconstructed 3-D position information has more general form than the conventional analysis for pixel-based stereo matching schemes. Computer simulation is observed to surpport the theoretical distribution.

  • PDF

Belief propagation stereo matching technique using 2D laser range finder (2차원 레이저 거리측정기를 활용한 신뢰도 전파 스테레오 정합 기법)

  • Kim, Jin-Hyung;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.132-142
    • /
    • 2014
  • Stereo camera is drawing attention as an essential sensor for future intelligence robot system since it has the advantage of acquiring not only distance but also other additive information for an object. However, it cannot match correlated point on target image for low textured region or periodic patterned region such as wall of building or room. In this paper, we propose a stereo matching technique that increase the matching performance by fusing belief propagation stereo matching algorithm and local distance measurements of 2D-laser range finder in order to overcome this kind of limitation. The proposed technique adds laser measurements by referring quad-tree based segment information on to the local-evidence of belief propagation stereo matching algorithm, and calculates compatibility function by reflecting over-segmented information. Experimental results of the proposed method using simulation and real test images show that the distance information for some low textured region can be acquired and the discontinuity of depth information is preserved by using segmentation information.

Post Processing to Reduce Wrong Matches in Stereo Matching

  • Park, Hee-Ju;Lee, Suk-Bae
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.43-49
    • /
    • 2001
  • Although many kinds of stereo matching method have been developed in the field of computer vision and photogrammetry, wrong matches are not easy to avoid. This paper presents a new method to reduce wrong matches after matching, and experimental results are reported. The main idea is to analyze the histogram of the image attribute differences between each pair of image patches matched. Typical image attributes of image patch are the mean and the standard deviation of gray value for each image patch, but there could be other kinds of image attributes. Another idea is to check relative position among potential matches. This paper proposes to use Gaussian blunder filter to detect the suspicious pair of candidate match in relative position among neighboring candidate matches. If the suspicious candidate matches in image attribute difference or relative position are suppressed, then many wrong matches are removed, but minimizing the suppression of good matches. The proposed method is easy to implement, and also has potential to be applied as post processing after image matching for many kinds of matching methods such as area based matching, feature matching, relaxation matching, dynamic programming, and multi-channel image matching. Results show that the proposed method produces fewer wrong matches than before.

  • PDF

Clausius Normalized Field-Based Stereo Matching for Uncalibrated Image Sequences

  • Koh, Eun-Jin;Lee, Jae-Yeon;Park, Jun-Seok
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.750-760
    • /
    • 2010
  • We propose a homology between thermodynamic systems and images for the treatment of time-varying imagery. A physical system colder than its surroundings absorbs heat from the surroundings. Furthermore, the absorbed heat increases the entropy of the system, which is closely related to its disorder as given by the definition of Clausius and Boltzmann. Because pixels of an image are viewed as a state of lattice-like molecules in a thermodynamic system, the task of reckoning the entropy variations of pixels is similar to estimating their degrees of disorder. We apply this homology to the uncalibrated stereo matching problem. The absence of calibrations alleviates user efforts to install stereo cameras and enables users to freely modify the composition of the cameras. The proposed method is also robust to differences in brightness, white balancing, and even focusing between stereo image pairs. These peculiarities enable users to estimate the depths of interesting objects in practical applications without much effort in order to set and maintain a stereo vision setup. Users can consequently utilize two webcams as a stereo camera.

Multi-Image Stereo Method Using DEM Fusion Technique (DEM 융합 기법을 이용한 다중영상스테레오 방법)

  • Lim Sung-Min;Woo Dong-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.212-222
    • /
    • 2003
  • The ability to efficiently and robustly recover accurate 3D terrain models from sets of stereoscopic images is important to many civilian and military applications. A stereo matching has been an important tool for reconstructing three dimensional terrain. However, there exist many factors causing stereo matching error, such as occlusion, no feature or repetitive pattern in the correlation window, intensity variation, etc. Among them, occlusion can be only resolved by true multi-image stereo. In this paper, we present multi-image stereo method using DEM fusion as one of efficient and reliable true multi-image methods. Elevations generated by all pairs of images are combined by the fusion process which accepts an accurate elevation and rejects an outlier. We propose three fusion schemes: THD(Thresholding), BPS(Best Pair Selection) and MS(Median Selection). THD averages elevations after rejecting outliers by thresholding, while BPS selects the most reliable elevation. To determine the reliability of a elevation or detect the outlier, we employ the measure of self-consistency. The last scheme, MS, selects the median value of elevations. We test the effectiveness of the proposed methods with a quantitative analysis using simulated images. Experimental results indicate that all three fusion schemes showed much better improvement over the conventional binocular stereo in natural terrain of 29 Palms and urban site of Avenches.

High-Performance VLSI Architecture for Stereo Vision (스테레오 비전을 위한 고성능 VLSI 구조)

  • Seo, Youngho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.669-679
    • /
    • 2013
  • This paper proposed a new VLSI (Very Large Scale Integrated Circuit) architecture for stereo matching in real time. We minimized the amount of calculation and the number of memory accesses through analyzing calculation of stereo matching. From this, we proposed a new stereo matching calculating cell and a new hardware architecture by expanding it in parallel, which concurrently calculates cost function for all pixels in a search range. After expanding it, we proposed a new hardware architecture to calculate cost function for 2-dimensional region. The implemented hardware can be operated with minimum 250Mhz clock frequence in FPGA (Field Programmable Gate Array) environment, and has the performance of 805fps in case of the search range of 64 pixels and the image size of $640{\times}480$.

An Object-based Stereo Matching Method Using Block-based Segmentation (블록 기반 영역 분할을 이용한 객체 기반 스테레오 정합 기법)

  • Kwak No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.5 no.4
    • /
    • pp.257-263
    • /
    • 2004
  • This paper is related to the object-based stereo matching algorithm which makes it possible to estimate inner-region disparities for each segmented region. First, several sample points are selected for effectively representing the segmented region, Next, stereo matching is applied to the small area within segmented region which existed in the neighborhood or each sample point. Finally, inner-region disparities are interpolated using a plane equation with disparity of each selected sample. According to the proposed method, the problem of feature-based method that the depth estimation is possible only in the feature points can be solved through the propagation of the disparity in the sample point into the inside of the region. Also, as selecting sample points in contour of segmented region we can effectively suppress obscurity which is occurred in the depth estimation of the monotone region in area-based methods.

  • PDF