Browse > Article
http://dx.doi.org/10.5909/JBE.2013.18.5.669

High-Performance VLSI Architecture for Stereo Vision  

Seo, Youngho (Kwangwoon University)
Kim, Dong-Wook (Kwangwoon University)
Publication Information
Journal of Broadcast Engineering / v.18, no.5, 2013 , pp. 669-679 More about this Journal
Abstract
This paper proposed a new VLSI (Very Large Scale Integrated Circuit) architecture for stereo matching in real time. We minimized the amount of calculation and the number of memory accesses through analyzing calculation of stereo matching. From this, we proposed a new stereo matching calculating cell and a new hardware architecture by expanding it in parallel, which concurrently calculates cost function for all pixels in a search range. After expanding it, we proposed a new hardware architecture to calculate cost function for 2-dimensional region. The implemented hardware can be operated with minimum 250Mhz clock frequence in FPGA (Field Programmable Gate Array) environment, and has the performance of 805fps in case of the search range of 64 pixels and the image size of $640{\times}480$.
Keywords
stereo matching; cost function; SAD; hardware; parallel architecture; cell-based; FPGA; processor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Scharstein and R. Szeliski, "A taxonomy and evaluation of dense two-frame stereo correspondence algorithms," International Journal of Computer Vision, Vol. 47, Issue 1-3, pp. 7-42, April 2002.   DOI   ScienceOn
2 M. Z. Brown, D. Burschka, and G. D. Hager, "Advances in computational stereo," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, Issue 8, pp. 993-1008, Aug. 2003.   DOI   ScienceOn
3 Y. Wang, J. Ostermann, and Y. Q. Zhang, "Video Processing and Communications," Prentice hall, 2002.
4 J. Woodfill, B. von Herzen, and R. Zabih, Frame-rate robust stereo on a PCI board. Available: http://www.cs.cornell.edu/rdz/ Papers/Archive /fpga.pdf
5 J. Sun, N. N. Zheng, and H. Y. Shum, "Stereo matching using belief propagation," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, Issue 25, pp. 787-800, July 2003.
6 S. Kimura, T. Shinbo, H. Yamaguchi, E. Kawamura, and K. Nakano, ""A convolver-based real-time stereo machine (SAZAN),"" in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit., Fort Collins, CO, vol. 1, pp. 457-463, Jun. 1999.
7 M. Kuhn, S. Moser, O. Isler, F. K. Gurkaynak, A. Burg, N. Felber, H. Kaeslin, and W. Fichtner, ""Efficient ASIC implementation of a real- time depth mapping stereo vision system,"" in Proc. IEEE Int. Circuits Syst. (MWSCAS '03), Cairo, Egypt, vol. 3, pp. 1478-1481, Dec. 2003.
8 A. Darabiha, J. Rose, and W. J. Maclean, "ideo-rate stereo depth measurement on programmable hardware,"in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit., Madison, WI, vol. 1, pp. 203 -210, Jun. 2003.
9 Y. Jia, X. Zhang, M. Li, and L. An, "A miniature stereo vision machine (MSVM-III) for dense disparity mapping," in Proc. 17th Int. Conf. Pattern Recognit., Cambridge, U.K., vol. 1. pp. 728-731, Aug. 2004
10 J. I. Woodfill, G. Gordon, and R. Buck, ""Tyzx DeepSea high speed stereo vision system,"" in Proc. IEEE Comput. Soc. Workshop Real-Time 3-D Sensors Use Conf. Comput. Vision Pattern Recog., Washington D.C., Jun. 2004, pp. 41-46.
11 S. Jin, J. Cho, X. D. Pham, K. M. Lee, S.-K. Park, M. Kim, and J. W. Jeon,, "FPGA Design and Implementation of a Real-Time Stereo Vision System," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 20, No. 1, pp. 15-26, Jan. 2010.   DOI   ScienceOn
12 R. C. Gonzales and R. E. Woods, "Digital image processing," Prentice Hall, 2nd edtion, 2001.