• Title/Summary/Keyword: stereo images

Search Result 805, Processing Time 0.026 seconds

Visibility Enhancement of Underwater Stereo Images Using Depth Image (깊이 영상을 이용한 수중 스테레오 영상의 가시성 개선)

  • Shin, Hyoung-Chul;Kim, Sang-Hoon;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.684-694
    • /
    • 2012
  • In the underwater environment, light is absorbed and scattered by water and floating particles, which makes the underwater images suffer from color degradation and limited visibility. Physically, the amount of the scattered light transmitted to the image is proportional to the distance between the camera and the object. In this paper, the proposed visibility enhancement. method utilizes depth images to estimate the light transmission and the degradation factor by the scattered light. To recover the scatter-free images without unnatural artifacts, the proposed method normalizes the degradation factor based on the value of each pixel of the image. Finally, the scatter-free images are obtained by removing the scattered components on the image according to the estimated transmission. The proposed method also considers the color discrepancies of underwater stereo images so that the stereo images have the same color appearance after the visibility enhancement. The experimental results show that the proposed method improves the color contrast more than 5% to 14% depending on the experimental images.

Stereo Matching Algorithm by using Color Information (색상 정보를 이용한 스테레오 정합 기법)

  • An, Jae-Woo;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.407-415
    • /
    • 2012
  • In this paper, we propose a new stereo matching algorithm by using color information especially for stereo images containing human beings in the applications such as tele-presence system. In the proposed algorithm, we first remove the background regions by using a threshold value for stereo images obtained by stereo camera and then find an initial disparity map and segment a given image into R, G, B and white color components. We also obtain edges in the segmented image and estimate the disparity from the extract boundary regions. Finally, we generate the final disparity map by properly combining the disparity map of each color component. Experiment results show better performance compared with the window based method and the dynamic programing method especially for stereo images with human being.

A Multi-Level Accumulation-Based Rectification Method and Its Circuit Implementation

  • Son, Hyeon-Sik;Moon, Byungin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3208-3229
    • /
    • 2017
  • Rectification is an essential procedure for simplifying the disparity extraction of stereo matching algorithms by removing vertical mismatches between left and right images. To support real-time stereo matching, studies have introduced several look-up table (LUT)- and computational logic (CL)-based rectification approaches. However, to support high-resolution images, the LUT-based approach requires considerable memory resources, and the CL-based approach requires numerous hardware resources for its circuit implementation. Thus, this paper proposes a multi-level accumulation-based rectification method as a simple CL-based method and its circuit implementation. The proposed method, which includes distortion correction, reduces addition operations by 29%, and removes multiplication operations by replacing the complex matrix computations and high-degree polynomial calculations of the conventional rectification with simple multi-level accumulations. The proposed rectification circuit can rectify $1,280{\times}720$ stereo images at a frame rate of 135 fps at a clock frequency of 125 MHz. Because the circuit is fully pipelined, it continuously generates a pair of left and right rectified pixels every cycle after 13-cycle latency plus initial image buffering time. Experimental results show that the proposed method requires significantly fewer hardware resources than the conventional method while the differences between the results of the proposed and conventional full rectifications are negligible.

The Accuracy of Stereo Digital Camera Photogrammetry (스테레오 디지털 카메라를 이용한 사진측량의 정확도)

  • Kim, Gi-Hong;Youn, Jun-Hee;Park, Ha-Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.663-668
    • /
    • 2010
  • In this study a stereo digital camera system was developed. Using this system, we can collect informations such as coordinates, lengths of all objects shown in the photo image just by taking digital photograph in field. This system has the advantage of obtaining stereo images with settled exterior orientation parameters, while the accuracy slightly worsen because in a close range photogrammetry with stereo digital camera system, the base line distance is restricted within about 1m. We took images with various exposure distances and angles to objects for experimental error assessment, and analyzed the affection of image coordinates errors.

Depth Extraction of Partially Occluded 3D Objects Using Axially Distributed Stereo Image Sensing

  • Lee, Min-Chul;Inoue, Kotaro;Konishi, Naoki;Lee, Joon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.275-279
    • /
    • 2015
  • There are several methods to record three dimensional (3D) information of objects such as lens array based integral imaging, synthetic aperture integral imaging (SAII), computer synthesized integral imaging (CSII), axially distributed image sensing (ADS), and axially distributed stereo image sensing (ADSS). ADSS method is capable of recording partially occluded 3D objects and reconstructing high-resolution slice plane images. In this paper, we present a computational method for depth extraction of partially occluded 3D objects using ADSS. In the proposed method, the high resolution elemental stereo image pairs are recorded by simply moving the stereo camera along the optical axis and the recorded elemental image pairs are used to reconstruct 3D slice images using the computational reconstruction algorithm. To extract depth information of partially occluded 3D object, we utilize the edge enhancement and simple block matching algorithm between two reconstructed slice image pair. To demonstrate the proposed method, we carry out the preliminary experiments and the results are presented.

Calibration of a Rotating Stereo Line Camera System for Indoor Precise Mapping (실내 정밀 매핑을 위한 회전식 스테레오 라인 카메라 시스템의 캘리브레이션)

  • Oh, Sojung;Shin, Jinsoo;Kang, Jeongin;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.171-182
    • /
    • 2015
  • We propose a camera system to acquire indoor stereo omni-directional images and its calibration method. These images can be utilized for indoor precise mapping and sophisticated imagebased services. The proposed system is configured with a rotating stereo line camera system, providing stereo omni-directional images appropriate to stable stereoscopy and precise derivation of object point coordinates. Based on the projection model, we derive a mathematical model for the system calibration. After performing the system calibration, we can estimate object points with an accuracy of less than ${\pm}16cm$ in indoor space. The proposed system and calibration method will be applied to indoor precise 3D modeling.

Stereo Matching Using Distance Trasnform and 1D Array Kernel (거리변환과 1차원 배열을 이용한 적응적 스테레오 정합)

  • Chang, Yong-Jun;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • A stereo matching method is one of the ways to obtain a depth value from two dimensional images. This method estimates the depth value of target images using stereo images which have two different viewpoints. In the result of stereo matching, the depth value is represented by a disparity value. The disparity means a distance difference between a current pixel in one side of stereo images and its corresponding point in the other side of stereo images. The stereo matching in a homogeneous region is always difficult to find corresponding points because there are no textures in that region. In this paper, we propose a novel matching equation using the distance transform to estimate accurate disparity values in the homogeneous region. The distance transform calculates pixel distances from the edge region. For this reason, pixels in the homogeneous region have specific values when we apply this transform to pixels in that region. Therefore, the stereo matching method using the distance transform improves the matching accuracy in the homogeneous regions. In addition, we also propose an adaptive matching cost computation using a kernel of one dimensional array depending on the characteristic of regions in the image. In order to aggregate the matching cost, we apply a cross-scale cost aggregation method to our proposed method. As a result, the proposed method has a lower average error rate than that of the conventional method in all regions.

A Study on the Improvements of Positioning Accuracy of Digital Elevation Model Using SPOT Satellite Triplet Images (SPOT 3중 입체위성영상을 이용한 수치표고모형의 정확도 개선)

  • Cho, Bong-Whan;Lee, Yong-Woong;Shin, Dae-Shik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.1 s.5
    • /
    • pp.55-66
    • /
    • 1995
  • Most studies using satellite images have been performed to determine three dimensional positioning by stereoscopic analysis for stereo-pair or to extract digital elevation model by stereo matching using image correlation techniques. Because the small errors on the ground control points have a great impact on the results, however, it is hard to get reliable products when we analyze satellite orbital parameters or acquire digital elevation model by using only stereo-pair. Also, if there are noises, shadows, or clouds on the one of stereo pair, it is difficult to produce DEM(digital elevation model) on the area under analysis or to have good accuracy. In these case, it can be solved by systematic analysis of the multiple stereo images. This paper suggests the improvements on the accuracy of the digital elevation model by the developments of stereoscopic analysis techniques for the triplet of SPOT satellite images on the same area.

  • PDF

A Study on Stereo Visualization of the X-ray Scanned Image Based on Volume Reconstruction (볼륨기반 X-선 스캔영상의 3차원 형상화 연구)

  • Lee, Nam-Ho;Park, Soon-Yong;Hwang, Young-Gwan;Park, Jong-Won;Lim, Yong-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1583-1590
    • /
    • 2011
  • As the existing radiation scanning systems use 2-dimensional radiation scanned images, the low accuracy has been pointed out as a problem of it. This research analyzes the applicability of the stereo image processing technique to X-ray scanned images. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. As the radiation image is just a density information of the scanned object, the direct application of the general stereo image processing techniques to it is inefficient. To overcome this limitation of a stereo image processing in radiation area, we reconstruct 3-D shapes of the edges of the objects. Also, we proposed a new volume based 3D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for such objects which CT or MRI cannot inspect due to restricted scan environment.

A Study on the Improvements of Positioning Accuracy of Digital Elevation Model Using SPOT Satellite Triplet Images (SPOT 3중 입체위성영상을 이용한 수치지형표고 정확도 개선)

  • Cho, Bong-Whan;Lee, Yong-Woong;Shin, Dae-Shik
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.99-119
    • /
    • 1995
  • Most studies using satellite images have been performed to determine three dimensional positioning by stereoscopic analysis for stereo-pair or to extract digital elevation model by stereo matching using image correlation techniques. Because the small errors on the ground control points have a great impact on the results, honorer, it is hard to get reliable products when we analyze satellite orbital parameters or acquire digital elevation model by using only stereo-pair. Also, if there are noises, shadows, or clouds on the one of stereo pair, it is difficult to produce DEM(digital elevation model) on the area under analysis or to have good accuracy. In these case, it can be solved by systematic analysis of the multiple stereo images. This paper suggests the improvements on the accuracy of the digital elevation model by the developments of stereoscopic analysis techniques for the triplet of SPOT satellite images on the same area.

  • PDF