• Title/Summary/Keyword: stereo image sensor

Search Result 119, Processing Time 0.027 seconds

Refinements of Multi-sensor based 3D Reconstruction using a Multi-sensor Fusion Disparity Map (다중센서 융합 상이 지도를 통한 다중센서 기반 3차원 복원 결과 개선)

  • Kim, Si-Jong;An, Kwang-Ho;Sung, Chang-Hun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.298-304
    • /
    • 2009
  • This paper describes an algorithm that improves 3D reconstruction result using a multi-sensor fusion disparity map. We can project LRF (Laser Range Finder) 3D points onto image pixel coordinatesusing extrinsic calibration matrixes of a camera-LRF (${\Phi}$, ${\Delta}$) and a camera calibration matrix (K). The LRF disparity map can be generated by interpolating projected LRF points. In the stereo reconstruction, we can compensate invalid points caused by repeated pattern and textureless region using the LRF disparity map. The result disparity map of compensation process is the multi-sensor fusion disparity map. We can refine the multi-sensor 3D reconstruction based on stereo vision and LRF using the multi-sensor fusion disparity map. The refinement algorithm of multi-sensor based 3D reconstruction is specified in four subsections dealing with virtual LRF stereo image generation, LRF disparity map generation, multi-sensor fusion disparity map generation, and 3D reconstruction process. It has been tested by synchronized stereo image pair and LRF 3D scan data.

  • PDF

RPC-based epipolar image resampling of Kompsat-2 across-track stereos (RPC를 기반으로 한 아리랑 2호 에피폴라 영상제작)

  • Oh, Jae-Hong;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.157-164
    • /
    • 2011
  • As high-resolution satellite images have enabled large scale topographic mapping and monitoring on global scale with short revisit time, agile sensor orientation, and large swath width, many countries make effort to secure the satellite image information. In Korea, KOMPSAT-2 (KOrea Multi-Purpose SATellite-2) was launched in July 28 2006 with high specification. These satellites have stereo image acquisition capability for 3D mapping and monitoring. To efficiently handle stereo images such as stereo display and monitoring, the accurate epipolar image generation process is prerequisite. However, the process was highly limited due to complexity in epipolar geometry of pushbroom sensor. Recently, the piecewise approach to generate epipolar images using RPC was developed and tested for in-track IKONOS stereo images. In this paper, the piecewise approach was tested for KOMPSAT-2 across-track stereo images to see how accurately KOMPSAT-2 epipolar images can be generated for 3D geospatial applications. In the experiment, two across-track stereo sets from three KOMPSAT-2 images of different dates were tested using RPC as the sensor model. The test results showed that one-pixel level of y-parallax was achieved for manually measured tie points.

Measurement of GMAW Bead Geometry Using Biprism Stereo Vision Sensor (바이프리즘 스테레오 시각 센서를 이용한 GMA 용접 비드의 3차원 형상 측정)

  • 이지혜;이두현;유중돈
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.200-207
    • /
    • 2001
  • Three-diemnsional bead profile was measured using the biprism stereo vision sensor in GMAW, which consists of an optical filter, biprism and CCD camera. Since single CCD camera is used, this system has various advantages over the conventional stereo vision system using two cameras such as finding the corresponding points along the horizontal scanline. In this wort, the biprism stereo vision sensor was designed for the GMAW, and the linear calibration method was proposed to determine the prism and camera parameters. Image processing techniques were employed to find the corresponding point along the pool boundary. The ism-intensity contour corresponding to the pool boundary was found in the pixel order and the filter-based matching algorithm was used to refine the corresponding points in the subpixel order. Predicted bead dimensions were in broad agreements with the measured results under the conditions of spray mode and humping bead.

  • PDF

High Speed Self-Adaptive Algorithms for Implementation in a 3-D Vision Sensor (3-D 비젼센서를 위한 고속 자동선택 알고리즘)

  • Miche, Pierre;Bensrhair, Abdelaziz;Lee, Sang-Goog
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.123-130
    • /
    • 1997
  • In this paper, we present an original stereo vision system which comprises two process: 1. An image segmentation algorithm based on new concept called declivity and using automatic thresholds. 2. A new stereo matching algorithm based on an optimal path search. This path is obtained by dynamic programming method which uses the threshold values calculated during the segmentation process. At present, a complete depth map of indoor scene only needs about 3 s on a Sun workstation IPX, and this time will be reduced to a few tenth of second on a specialised architecture based on several DSPs which is currently under consideration.

  • PDF

Comparison of Single-Sensor Stereo Model and Dual-Sensor Stereo Model with High-Resolution Satellite Imagery (고해상도 위성영상에서의 동종센서 스테레오 모델과 이종센서 스테레오 모델의 비교)

  • Jeong, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.421-432
    • /
    • 2015
  • There are significant differences in geometric property and stereo model accuracy between single-sensor stereo that uses two images taken by stereo acquisition mechanism within identical sensor and dual-sensor stereo that randomly combines two images taken from two different sensors. This paper compares the two types of stereo pairs thoroughly. For experiment, two single-sensor stereo pairs and four dual-sensor stereo pairs were constituted using SPOT-5 stereo and KOMPSAT-2 stereo covering same area. While the two single-sensor stereos have stable geometry, the dual-sensor stereos produced two stable and two unstable geometries. In particular, the unstable geometry led to a decrease in stereo model accuracy of the dual-sensor stereos. The two types of stereo pairs were also compared under the stable geometry. Overall, single-sensor stereos performed better than dual-sensor stereos for vertical mapping, but dual-sensor stereos was more accurate for horizontal mapping. This paper has revealed the differences of two types of stereos with their geometric properties and positioning accuracies, suggesting important considerations for handling satellite stereo images, particularly for dual-satellite stereo images.

Collision Avoidance for Indoor Mobile Robotics using Stereo Vision Sensor (스테레오 비전 센서를 이용한 실내 모바일 로봇 충돌 회피)

  • Kwon, Ki-Hyeon;Nam, Si-Byung;Lee, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2400-2405
    • /
    • 2013
  • We detect the obstacle for the UGV(unmanned ground vehicle) from the compound image which is generated by stereo vision sensor masking the depth image and color image. Stereo vision sensor can gathers the distance information by stereo camera. The obstacle information from the depth compound image can be send to mobile robot and the robot can localize the indoor area. And, we test the performance of the mobile robot in terms of distance between the obstacle and the robot's position and also test the color, depth and compound image respectively. Moreover, we test the performance in terms of number of frame per second which is processed by operating machine. From the result, compound image shows the improved performance in distance and number of frames.

A Study of the 3D-Reconstruction of indoor using Stereo Camera System (스테레오 카메라를 이용한 실내환경의 3차원 복원에 관한 연구)

  • Lee Dong-Hun;Um Dae-Youn;Kang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.42-47
    • /
    • 2005
  • In this papcr, we address the 3D reconstruction of the indoor circumstance using what the data is extracted by a pall of image from Stereo Camera. Generally sucaking, there arc three methods to extract 3-Dimensional data using IR sensor, Laser sensor and Stereo camera sensor. The best is stereo camera sensor which can show a high performance at a reasonable price. We used 'Window Correlation Matching Method' to extract 3-Dimensional data in stereo image. We proposed new Method to reduce error data, said 'Histogram Weighted Hough Transform'. Owing to this mettled, we reduced error data in each stereo image. So reconstruction is well done. 3-Dimensional Reconstruction is accomplished by using the DirectX that is well known as 3D-Game development tool. We show that the stereo camera can be not only used to extract 3-dimensional data but also applied to reconstruct the 3-Dimensional circumstance. And we try to reduce the error data using various method.

A Novel Robot Sensor System Utilizing the Combination Of Stereo Image Intensity And Laser Structured Light Image Information

  • Lee, Hyun-Ki;Xingyong, Song;Kim, Min-Young;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.729-734
    • /
    • 2005
  • One of the important research issues in mobile robot is how to detect the 3D environment fast and accurately, and recognize it. Sensing methods of utilizing laser structured light and/or stereo vision are representatively used among a number of methodologies developed to date. However, the methods are still in need of achieving high accuracy and reliability to be used for real world environments. In this paper to implement a new robotic environmental sensing algorithm is presented by combining the information between intensity image and that of laser structured light image. To see how effectively the algorithm applied to real environments, we developed a sensor system that can be mounted on a mobile robot and tested performance for a series of environments.

  • PDF

DIRECT EPIPOLAR IMAGE GENERATION FROM IKONOS STEREO IMAGERY BASED ON RPC AND PARALLEL PROJECTION MODEL

  • Oh, Jae-Hong;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.860-863
    • /
    • 2006
  • Epipolar images have to be generated to stereo display aerial images or satellite images. Pushbroom sensor is used to acquire high resolution satellite images. These satellite images have curvilinear epipolar lines unlike the epipolar lines of frame images, which are straight lines. The aforementioned fact makes it difficult to generate epipolar images for pushbroom satellite images. If we assume a linear transition of the sensor having constant speed and attitude during image acquisition, we can generate epipolar images based on parallel projection model (2D Affine model). Recent high resolution images are provided with RPC values so that we can exploit these values to generate epipolar images without using ground control points and tie point. This paper provides a procedure based on the parallel projection model for generating epipolar images directly from a stereo IKONOS images, and experimental results.

  • PDF

Direct Epipolar Image Generation From IKONOS Stereo Imagery Based On RPC and Parallel Projection Model

  • Oh, Jae-Hong;Shin, Sung-Woong;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.451-456
    • /
    • 2006
  • Epipolar images have to be generated to stereo display aerial images or satellite images. Pushbroom sensor is used to acquire high resolution satellite images. These satellite images have curvilinear epipolar lines unlike the epipolar lines of frame images, which are straight lines. The aforementioned fact makes it difficult to generate epipolar images for pushbroom satellite images. If we assume a linear transition of the sensor having constant speed and attitude during image acquisition, we can generate epipolar images based on parallel projection model (20 Affine model). Recent high resolution images are provided with RPC values so that we can exploit these values to generate epipolar images without using ground control points and tie point. This paper provides a procedure based on the parallel projection model for generating epipolar images directly from a stereo IKONOS images, and experimental results.