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1. INTRODUCTION 
 

A major research issue for mobile robots is to develop an 
effective environment sensing and recognizing system. 
Among them the binocular or multi vision sensor system has 
been widely used as representative ones of passive visual 
sensors. But they still have some problems due to the 
illumination noise, insufficient feature information in 
environment composed of plain surfaces, and correspondence 
problem between multiple images. These reasons have led 
most mobile robot researches on 3D environment 
reconstruction using visual sensors to deal with just straight 
line edge and corner as interesting features. [1-3] But these 
features can be observed clearly in well arranged and 
structured environment with polygonal objects or 
polygon-textured surfaces. In addition, this information is not 
sufficient to describe the whole structure of 3D space. 
Therefore, robots frequently use active sensors to get more 
reliable range information, and have a promising alternative 
proposal which includes the infrared sensor, the ultrasonic 
sensor, and the laser sensor [4].  

In many approaches to indoor robot applications, laser 
sensor has been used for detail sensing and modeling objects, 
which is commonly categorized as the laser visual sensor and 
the laser range finder measuring the time-of-flight. The laser 
range finder has more advantages in views of measuring range 
and accuracy, but it still has some problems such as high 
hardware cost, high power consumption, heavy weight, and 
low accuracy in near range. In addition, it needs many 
scanning procedures. This scanning procedure is a time 
consuming task to limit the sensing time, and also needs a 
precisely controlled scanning mechanism. In order to keep up 
the advantages of the sensor system using the laser-structured 
light and to decrease the sensing time without degradation of 
the sensor resolution, it was necessary to develop a new visual 
sensor system, which combined the laser structured light 
method and stereo vision method mentioned above.  

In our previous work, we proposed a novel visual sensor 
system combining an active trinocular range sensor and a 
stereo vision, which is composed of a laser pattern projector 
and two cameras [5, 14]. In case when the laser projector is 
utilized, because the projector can be modeled as another 
virtual camera with previously known input image, this sensor 
system can be treated as an active trinocular vision, and the 
acquired image can be analyzed using trinocular vision theory. 

However, in case when the laser projector is not used, two 
cameras configure a normal stereo vision and can acquire 
stereo intensity images on scenes. This information can be 
used for extracting other 3D range information based on stereo 
vision theory or for supporting the robustness of the active 
trinocular vision sensor.  

Recently, several researchers have performed researches of 
combining laser range data and intensity images: (1) texture 
mapping on the range data and registration for realistic 3D 
modeling [6, 7], (2) efficient edge searching and image 
segmentation using both range image and intensity image [8, 
9], and (3) range data updating [10, 11]. Especially, Tate and 
Li [11] developed a multi-resolution method for the depth map 
acquisition with high resolution from a low-resolution laser 
range image and a stereo pair of high-resolution intensity 
images.  

In this paper, we propose a novel information combination 
method improving the correspondence matching problem of 
the stereo vision via the information from the active vision. 
The mobile robot used in this paper is shown in Figure 1. For 
autonomous navigation for unknown space, it is equipped with 
a number of sensors, e.g., ultrasonic sensors, infrared sensors, 
and the proposed sensor head shown in Figure 2. During the 
navigation process, it perceives the navigation environment by 
using these sensors. To obtain the detailed 3D range 
information on environment, the proposed sensor head 
mounted on a pan-tilt unit is utilized, which enables the 
cameras to change the viewing direction freely. 
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Fig. 1  An autonomous mobile robot, LCARIII 
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Fig. 2  Sensor head for 3D environment perception 
 
 

2. STEREO VISION 
 

When a stereo vision is utilized in this sensor system 
among various local area methods, a range information can be 
extracted from the acquired intensity images. However, the 
well-known correspondence problem still makes this range 
extracting process difficult. The related researches can be 
roughly classified into local method and global method [15]. 
For local methods a representative one utilizes the area-based 
intensity correlation between the right and left images. Among 
a variety of similarity measures between two windows 
specified in the left and right images, a simple measure called 
SAD (sum of absolute differences), SSD (sum of squared 
differences), NCC (normalized cross correlation), or SMW 
(symmetric multiple window) has been widely used. Although 
they are efficient, they are sensitive to local intensity noise 
(occlusion or uniform textured region). In contrast, global 
methods are less sensitive to these problems since global 
constraints such as depth continuity constraint provide 
additional support for these ambiguous regions. However, they 
may cause in expensive computational costs. As a global 
method, dynamic programming and graph cuts have been 
frequently used. A detailed description for current trend of 
stereo vision research can be found in the references [12, 15].   

In the work related to this paper, a dynamic programming 
method [16] is used, which focuses on the range information 
acquisition. This method has an advantage of being able to 
handle large untextured regions which are frequently 
encountered in navigation environments. It performs an 
optimization process at each corresponding epipolar lines of 
two left and right images respectively (same rows at each 
intensity image). Before the optimization, the rectification 
needs to be applied to make the corresponding epipolar lines 
parallel within each image frame. By scanning each pixel in 
the epipolar lines located in the same row, the optimization 
process is performed with the following cost function: 

     ( )
1

( ) ,  
mN

oc oc m r
i

J m N N d x yλ λ
=

= − +∑       (1) 

where J(m) is the cost function of the mth row, λoc is the 
constant occlusion penalty, λr is a constant match reward, 
( ),  ( ) ( )L Rd x y I x I y= −  is the intensity dissimilarity between 

candidate pixel x  in the left image and candidate pixel y  in 
the right image at each mth row scan line, and Noc and Nm are 
the number of occlusions and matches, respectively. It is noted 
that if occlusion and reward are not considered J contains only 
the dissimilarity ( ),  d x y , representing local area methods as 
indicated in the third term. 

To carry out the minimization of J defined in the above, the 
following procedure is taken: 

1. We form an array composed of row pixels of the right 
image × row pixels of the left image. 

2. We select a set of pixels that may be indicative of 
correspondence candidates lying within a 
designer-defined maximum disparity. 

3. Finally, we choose a set of cells that yield a minimum 
value of J. 

In this way, we obtain the depth information on the epipolar 
line. By repeating the whole epipolar line within the image 
frame, we obtain the dense depth map over the captured 
image. 
 
 

3. THE SENSOR INTEGRATION ALGORITHM 
3.1 The architecture of combination algorithm  

Figure 3 shows the concept of proposed sensor integration 
algorithm The information from laser structured light image 
takes a role of acquiring 3D dense depth map from stereo 
intensity images with assistance of relatively accurate but 
sparse range data. This architecture makes stereo vision more 
robust for highly ambiguous regions due to geometric 
occlusion and untextured object surface.  

The DP approach [16] mentioned above can handle a few 
untextured regions, but it may not be effective for large 
untextured regions. Inherently local area method of stereo 
vision algorithm has this weak point, because it just considers 
the intensity difference between each candidate pixel in left 
and right images during matching process. To overcome this 
difficulty more reliable range data from active vision play a 
role of constraint which can give a relationship between 
neighborhood rows for optimization method of dynamic 
programming. 
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Fig. 3  Conceptual diagram of a proposed algorithm 

 
3.2 The proposed integration algorithm  
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The stereo vision algorithm using intensity images can 
make a dense depth map at once, but the accuracy is generally 
lower than that obtained by the active vision sensor. In other 
words, active vision algorithms using laser structured light can 
make a depth map more accurately. But active vision 
algorithms can get a sparse depth information due to the 
feature of laser structured line. If we want to make a dense 
depth map, it needs some scan process using moving 
mechanism. According to integration of these two sensors we 
can make a more accurate and fast range information. 
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(a) Original DP algorithm 
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(b) Proposed integration algorithm 
 
Fig. 4  Original DP algorithm vs. proposed integration 

algorithm 
 
First, we choose one row which has correspondence at each 

left and right intensity image as shown in Figure 4. Original 
algorithm is dealing with whole intensity information as 
shown in Figure 4, but here for simplification we assume each 
row of each intensity image consists of ten pixels and disparity 
maximum value is four. Although originally stereo vision 
algorithm deals with at the whole rows of each intensity image, 
here we just explain the algorithm by taking one row for 
example because the algorithm for one row can be adapted to 
other rows as the same way.  

Second, we get laser structured light information at the 
same row which is chosen in the previous step. We assume 
laser structured line position at the left laser structured light 
image is the fifth pixel and one at the right laser structured 
light image is the third as shown in top figures of Figure 5. In 
this figures the white grids indicate the laser structured light 
position.  

Next, we can make a 10 by 10 matrix, in which x axis 
indicates pixels of the right row, and y axis indicates pixels of 
the left row chosen at the first time. The matrix shape is shown 
in Figure 4, where white pixels indicate the candidate pixels to 
be matched and black pixels indicate the non-candidate pixels. 
As we assume the maximum disparity is 4 initially, we can see 
that in the figure the number of white pixels in each column of 
the matrix is 4. 
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Fig. 5  A proposed method of assigning penalty values in 
dynamic programming in case of combining laser information 

to stereo information 
 
Next, we define modified cost function for proposed 

integration algorithm from Eq (1). 

( )
1

( ) ,  ( , )
mN

oc oc m r
i

J m N N d x y P x yλ λ
=

= − + +∑     (2) 

where ( , )P x y  penalty value between candidate pixel x  in 
the left image and candidate pixel y  in the right image at 
each mth row scan line 

Finally, we try to find the depth information from the 
candidate pixel using dynamic programming. Originally in the 
dynamic programming process, at each column and row we 
choose one candidate pixel ( i.e. (y, x) = <(1,1) (2,3) (3,5) ∙

∙ >) from white pixel in the figure, which satisfies the 
modified cost function defined in Eq. (2). In the integration 
algorithm, the pixel which locates in the intersection between 
right laser structured light point and left laser structured light 
point (right laser structured light point, left laser structured 
light point) assigns reward value for the cost function, and 
other pixels which locate (*, left laser structured light point), 
or (right laser structured light point, *) give big penalty value. 
For example, at the previous situation of (right laser structured 
light point, left laser structured light point)=(3,5), the pixel 
(3,5) takes 0 value as reward value, other pixels<(3,3) (3,4) 
(3,6) (2,5) (4,5) (5,5)> have a big penalty value. By doing this, 
the pixel (right laser structured light point, left laser structured 
light point) always include range data set which satisfy the 
cost function and it influences the range data sets for 
neighborhood pixels. 

 
 

4. EXPERIMENTS FOR THE PROPOSED 
ALGORITHMS  

 
In order to demonstrate the performance of the proposed 
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algorithm, we conducted a series of experiments under several 
environment configurations. In this work, the environments 
are classified into those obtained by combinations of 
untextured or textured background, and untextured or textured 
objects. Objects and background planes are placed at the 
distance range of about 0.7m in front of the sensor system 
mounted on the mobile robot. The size of the acquired dense 
map was fixed within 640x480 pixels. The dynamic 
programming (DP), we used for integration purpose as 
described in Figure 3, is loaded from Open CV Library 
developed by Intel[17] was merged into our algorithms.  

Figure 6 shows the results obtained from environment 1 
composed of an object (foot ball) and a randomly textured 
background, which is shown in Figure 6(a). The image 
containing laser structured stripes is depicted in Figure 6(b). 
The two results in Figure 6(c) and (d), one obtained by DP and 
the other by the proposed algorithm show a considerable 
difference in depth map. This kind of trend can also be 
observed from the experimental results obtained from 
environment 2 which consists of a rectangular block and the 
same textured background as used in the above experiment. 
The backgrounds were composed differently from the 
previous one in order to investigate the effectiveness of the 
algorithm case relatively to the DP algorithm. Figures 8 and 9 
illustrate such backgrounds where two objects are placed in 
the vicinity of each other in the same untextured background 
rather than the textured one. As we can see from both figures, 
the proposed algorithm works much better than DP algorithm. 
In the case of the proposed, we obtained rather accurate depth 
map whereas DP cannot produce recognizable depth map. The 
reason may be due to the fact that the algorithm may not work 
well in the environment having no appreciable gray difference. 
In Table 1, standard deviation of error has more important 
meaning than average of error. The error value is defined as 
difference between real depth value and reconstructed depth 
value. While the average of error shifts its position slightly, 
the standard deviation tends to decrease with helps of the 
proposed algorithms. Experimental results indicate almost 
30~70% improvement in the standard deviation of the error. 

In order to observe the error characteristics due to algorithm 
parameter, two experiments were performed. First, Figure 10 
shows how the penalty value assigned to unmatched cells in 
the search grid, which is a key parameter in the proposed 
fusion algorithms, affects the final disparity map. From 
above-mentioned environments, with variations of the penalty 
value, statistical error characteristics were investigated. 
Obtained experimental results show that a value between 500 
and 900 is proper for the penalty value. It is noticeable that 
higher penalty value always does not lead lower depth error 
and there is a certain band of the penalty value that makes the 
depth error lower. Second, Figure 11 shows how variations of 
the occlusion penalty and the match reward values in dynamic 
programming affect final disparity maps. On this contour map, 
statistical error characteristics are represented as the 
summation of error standard deviations for the whole 
experimental results with their variations. In λoc and λr  
coordinates, it is found that (10, 15) and (5, 25) shows two 
separated local minimums. 

 
 

   
 

a) left image from stereo vision  b) left image with laser line 
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Fig. 6  Experimental result for test environment 1  

 

  
 

a) left image from stereo vision  b) left image with laser line 
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Fig. 7  Experimental result for test environment 2  

 

    
 

a) left image from stereo vision  b) left image with laser line 
 

    
 

c) range image by dynamic 
programming 

d) range image by the proposed 
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Fig. 8  Experimental result for test environment 3  
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a) left image from stereo vision  b) left image with laser line 
 

    
 

c) range image by dynamic 
programming 

d) range image by the proposed 
integration algorithm 

 
Fig. 9  Experimental result for test environment 4  

 
Table 1 Error statistics between ground truth and experimental 

result. 
dynamic programming 

[16] Proposed fusion algorithms  

average 
error 

(pixel ) 

standard 
error 

deviation

average 
error 

(pixel ) 

standard 
error 

deviation 
Experiment 1 
(Fig. 6) 

0.7 114.2 1.3 83.2  
27%improvement 

Experiment 2 
(Fig. 7) 

1.2 148.9 2.8 52.9 
64%improvement 

Experiment 3 
(Fig. 8) 

0.8 336.9 1.8 86.7 
74%improvement 

Experiment 4 
(Fig. 9) 

14.5 391.1 2.5 104.3 
73%improvement 
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 Fig. 10  Error standard deviation with variation of the 
penalty value in the proposed algorithm 
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Fig. 11  Summation of error standard deviations for all 
experimental cases with variations of the occlusion penalty 

and the match reward in dynamic programming (contour plot) 
 
 

5. CONCLUSION 
For the mobile robot to perform a task and navigation 

accurately and robustly environment recognition is very 
important. In this paper by introducing a novel sensor 
combination method for this visual sensor system acquiring 
more reliable range information, using active and passive 
information simultaneously, we can get a accurate and robust 
result. Since each of two sensors has its own advantages and 
disadvantages on the measurements of various environments, 
the proposed sensor combination algorithm is essentially 
needed for robot sensing system. The acquired information 
from active vision sensor can be used for dense 
stereo-matching in stereo vision.  

To see how the proposed algorithms can be applied to real 
applications, we applied it to the sensor system mounted on a 
mobile robot. The performed experiments show that the 
proposed sensing algorithm can successfully and robustly 
make a depth map at any environments. The contribution of 
this paper is summarized as follows: 
 
1. A simple and efficient combination algorithm was proposed 

for laser structured light image and intensity image 
information. 

2. Due to the proposed combination algorithms that apply 
additional constraint of vertical constancy to the general 
dynamic programming method, it is shown that horizontal 
streaks in general dynamic programming methods are 
reduced largely in each disparity image.  

3. In case when objects are placed in front of untextured 
planes, sandwiched regions between objects frequently fall 
into serious disparity ambiguity with DP. But using the 
proposed algorithm we can get a almost reliable result.  
 
Now, this research is going on progress, and our research is 

focused on three-dimensional map building system using 
proposed algorithm for mobile robots. 
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