• Title/Summary/Keyword: stereo image

Search Result 1,065, Processing Time 0.029 seconds

Building Detection Using Edge and Color Information of Color Imagery (컬러영상의 경계정보와 색상정보를 활용한 동일건물인식)

  • Park, Choung Hwan;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.519-525
    • /
    • 2006
  • The traditional area-based matching or efficient matching methods using epipolar geometry and height restriction of stereo images, which have a confined search space for image matching, have still some disadvantages such as mismatching and timeconsuming, especially in the dense metropolitan city that very high and similar buildings exist. To solve these problems, a new image matching method through building recognition has been presented. This paper described building recognition in color stereo images using edge and color information as a elementary study of new matching scheme. We introduce the modified Hausdorff distance for using edge information, and the modified color indexing with 3-D RGB histogram for using color information. Color information or edge information alone is not enough to find conjugate building pairs. For edge information only, building recognition rate shows 46.5%, for color information only, 7.1%. However, building recognition rate distinctly increase 78.5% when both information are combined.

3D feature point extraction technique using a mobile device (모바일 디바이스를 이용한 3차원 특징점 추출 기법)

  • Kim, Jin-Kyum;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.256-257
    • /
    • 2022
  • In this paper, we introduce a method of extracting three-dimensional feature points through the movement of a single mobile device. Using a monocular camera, a 2D image is acquired according to the camera movement and a baseline is estimated. Perform stereo matching based on feature points. A feature point and a descriptor are acquired, and the feature point is matched. Using the matched feature points, the disparity is calculated and a depth value is generated. The 3D feature point is updated according to the camera movement. Finally, the feature point is reset at the time of scene change by using scene change detection. Through the above process, an average of 73.5% of additional storage space can be secured in the key point database. By applying the algorithm proposed to the depth ground truth value of the TUM Dataset and the RGB image, it was confirmed that the\re was an average distance difference of 26.88mm compared with the 3D feature point result.

  • PDF

Recognition method using stereo images-based 3D information for improvement of face recognition (얼굴인식의 향상을 위한 스테레오 영상기반의 3차원 정보를 이용한 인식)

  • Park Chang-Han;Paik Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.30-38
    • /
    • 2006
  • In this paper, we improved to drops recognition rate according to distance using distance and depth information with 3D from stereo face images. A monocular face image has problem to drops recognition rate by uncertainty information such as distance of an object, size, moving, rotation, and depth. Also, if image information was not acquired such as rotation, illumination, and pose change for recognition, it has a very many fault. So, we wish to solve such problem. Proposed method consists of an eyes detection algorithm, analysis a pose of face, md principal component analysis (PCA). We also convert the YCbCr space from the RGB for detect with fast face in a limited region. We create multi-layered relative intensity map in face candidate region and decide whether it is face from facial geometry. It can acquire the depth information of distance, eyes, and mouth in stereo face images. Proposed method detects face according to scale, moving, and rotation by using distance and depth. We train by using PCA the detected left face and estimated direction difference. Simulation results with face recognition rate of 95.83% (100cm) in the front and 98.3% with the pose change were obtained successfully. Therefore, proposed method can be used to obtain high recognition rate with an appropriate scaling and pose change according to the distance.

A Study on DEM Generation from Kompsat-3 Stereo Images (아리랑 3호 스테레오 위성영상의 DEM 제작 성능 분석)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. In addition to its 0.7m spatial resolution, Kompsat-3 is capable of in-track stereo acquisition enabling quality Digital Elevation Model(DEM) generation. Typical DEM generation procedure requires accurate control points well-distributed over the entire image region. But we often face difficult situations especially when the area of interests is oversea or inaccessible area. One solution to this is to use existing geospatial data even though they only cover a part of the image. This paper aimed to assess accuracy of DEM from Kompsat-3 with different scenarios including no control point, Rational Polynomial Coefficients(RPC) relative adjustment, and RPC adjustment with control points. Experiments were carried out for Kompsat-3 stereo data in USA. We used Digital Orthophoto Quadrangle(DOQ) and Shuttle Radar Topography Mission(SRTM) as control points sources. The generated DEMs are compared to a LiDAR DEM for accuracy assessment. The test results showed that the relative RPC adjustment significantly improved DEM accuracy without any control point. And comparable DEM could be derived from single control point from DOQ and SRTM, showing 7 meters of mean elevation error.

Three-Dimensional Image Display System using Stereogram and Holographic Optical Memory Techniques (스테레오그램과 홀로그래픽 광 메모리 기술을 이용한 3차원 영상 표현 시스템)

  • 김철수;김수중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6B
    • /
    • pp.638-644
    • /
    • 2002
  • In this paper, we implemented a three dimensional image display system using stereogram and holographic optical memory techniques which can store many images and reconstruct them automatically. In this system, to store and reconstruct stereo images, incident angle of reference beam must be controlled in real time, so we used BPH(binary phase hologram) and LCD(liquid crystal display) for controlling reference beam. The reference beams are acquired by Fourier transform of BPHs which designed with SA(simulated annealing)algorithm, and the BPHs are represented on the LCD with the 0.05 seconds time interval using application software for reconstructing the stereo images. And input images are represented on the LCD without polarizer/analyzer for maintaining uniform beam intensities regardless of the brightness of input images. The input images and BPHs are edited using application software(Photoshop) with having the same recording scheduled time interval in storing. The reconstructed stereo images are acquired by capturing the output images with CCD camera at the behind of the analyzer which transforms phase information into brightness information of images. In output plane, we used a LCD shutter that is synchronized to a monitor that display alternate left and right eye images for depth perception. We demonstrated optical experiment which store and reconstruct four stereo images in BaTiO$_3$ repeatedly using the proposed holographic optical memory techniques.

Automatic Geometric Calibration of KOMPSAT-2 Stereo Pair Data (KOMPSAT-2 입체영상의 자동 기하 보정)

  • Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.191-202
    • /
    • 2012
  • A high resolution satellite imagery such as KOMPSAT-2 includes a material containing rational polynomial coefficient (RPC) for three-dimensional geopositioning. However, image geometries which are calculated from the RPC must have inevitable systematic errors. Thus, it is necessary to correct systematic errors of the RPC using several ground control points (GCPs). In this paper, we propose an efficient method for automatic correction of image geometries using tie points of a stereo pair and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) without GCPs. This method includes four steps: 1) tie points extraction, 2) determination of the ground coordinates of the tie points, 3) refinement of the ground coordinates using SRTM DEM, and 4) RPC adjustment model parameter estimation. We validates the performance of the proposed method using KOMPSAT-2 stereo pair. The root mean square errors (RMSE) achieved from check points (CPs) were about 3.55 m, 9.70 m and 3.58 m in X, Y;and Z directions. This means that we can automatically correct the systematic error of RPC using SRTM DEM.

Stereo Image Coding Using Zerotree (제로트리 기법을 이용한 스테레오 영상 부호화)

  • Bae, Jin-Woo;Shin, Choel;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2092-2099
    • /
    • 2001
  • In the three-dimensional image system using stereoscopic images, efficient coding schemes which can get rid of redundancy between the left and right images are usually used. In this paper, we propose an efficient coding method by using relationship between a reference image and residual image. In the proposed algorithm, zero-tree method which guaranty a good quality in low bit rate is used for encoding the residual image. Zero-tree algorithm gives good coding performance, but it has computational complexity so that we used ADLS method to reduce time for the disparity estimation. Using the wavelet based zero-tree method, it is shown that high quality of image in the limited band-width can be preserved through computer simulation.

  • PDF

A Study on the Ceneration of Simulated High-Resolution Satellite Images (고해상도 모의위성영상 제작에 관한 연구)

  • 윤영보;조우석;박종현;이종훈
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.327-336
    • /
    • 2002
  • Ever since high resolution satellites were launched, high-resolution satellite images have been utilized in many areas. This paper proposed methods of generating simulated satellite image using DEM(Digital Elevation Model) and digital image such as aerial photograph. There are two methods proposed in the paper: one is Direct-Indirect method and the other Indirect-Indirect, method. It is assumed that satellite attitude is not changing and perspective center is moving in the direction of flight while image is captured. The proposed methods were implemented with aerial photograph, DEM data, arbitrary orbit parameters and attitude parameters of high resolution satellite image under generation. Furthermore, for the stereo viewing, different orientation parameters and perspective center were tested for generating simulated satellite image. In addition, the quality and accuracy of the simulated satellite image generated by the proposed methods were analyzed.

An Intermediate Image Generation Method using Multiresolution-based Hierarchical Disparity Map (다해상도 기반 계층적 변이맵을 이용한 중간영상 생성 방법)

  • 허경무;유재민
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.899-905
    • /
    • 2003
  • An intermediate images generation method using multi-resolution based hierarchical block matching disparity map is proposed. This method is composed of a disparity estimation, an occlusion detection and intermediate image synthesis. For the disparity estimation, which is one of the important processes in intermediate image synthesis, we use the multi-resolution based hierarchical block matching algorithm to overcome the imperfect ness of block matching algorithm. The proposed method makes disparity maps more accurate and dense by multi-resolution based hierarchical block matching, and the estimated disparity maps are used to generate intermediate images of stereo images. Generated intermediate images show 0.1∼1.4 ㏈ higher PSNR than the images obtained by block matching algorithm.

A Study on Robot OLP Compensation Based on Image Based Visual Servoing in the Virtual Environment (가상 환경에서의 영상 기반 시각 서보잉을 통한 로봇 OLP 보상)

  • Shin Chan-Bai;Lee Jeh-Woon;Kim Jin-Dae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.248-254
    • /
    • 2006
  • It is necessary to improve the exactness and adaptation of the working environment for the intelligent robot system. The vision sensor have been studied for a long time at this points. However, it has many processes and difficulties for the real usages. This paper proposes a visual servoing in the virtual environment to support OLP(Off-Line-Programming) path compensation and supplement the problem of complexity of the old kinematical calibration. Initial robot path could be compensated by pixel differences between real and virtual image. This method removes the varies calibrations and 3D reconstruction process in real working space. To show the validity of the proposed approach, virtual space servoing with stereo camera is carried out with WTK and openGL library for a KUKA-6R manipulator and updated real robot path.