• Title/Summary/Keyword: step-up ratio

Search Result 274, Processing Time 0.026 seconds

Fabrication and Electro-Mechanical Characteristic Analysis of Piezoelectric Micro-transformers (마이크로 압전변압기 제작 및 전기-기계적 특성 분석)

  • Kim, Seong-Kon;Seo, Young-Ho;Whang, Kyung-Hyun;Choi, Doo-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.231-234
    • /
    • 2008
  • For the applications which need a micro-power supply such as thin and flat displays, micro-robot, and micro-system, it is especially necessary to integrate the passive components because they typically need more than 2/3 of the space of the conventional circuit. Therefore, we have designed and fabricated a novel piezoelectric micro transformer using the PZT thin film and MEMS technologies for application to the energy supply device of the micro-systems. The dimensions of the micro-transformer is $1000{\mu}m\;{\times}\;400{\mu}m\;{\times}\;4.8{\mu}m$ $(length{\times}width{\times}thickness)$. The dynamic displacement of around $9.2{\pm}0.064{\mu}m$ was observed at 10 V. The dynamic displacement varied almost linearly with applied voltage. The average voltage gain (step-up ratio) was approximately 2.13 at the resonant frequency $(F_r=8.006KHz)$ and load resistance $(R_L)$ of 1 $M{\Omega}$.

Fenton난s Reagent Oxidation of Refractory Organics in Petrochemical Plant Effluent (석유화학공장 방류수내 난분해성 유기물의 Fenton 산화처리)

  • Lee, Kyu-Hoon;Jung, Dae-Young;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 1996
  • The purpose of this study was to evaluate the partial oxidation of the biological treatment plant effluents using Fenton's reagent as a pretreatment step prior to a tertiary biological oxidation of these effluents. Fenton's reagent was evaluated as a pretreatment process for inhibitory or refractory organics. Based on the Fenton oxidation system, the petrochemical wastewater treatment plant effluent was shown to have significant improvement in toxicity after oxidation with hydrogen peroxide. For example, at ranee of 42 ∼ 184 mg/L COD of petrochemical plant effluents, the COD removal efficiencies were from 38.2% to 60.1% after reaction with hydrogen peroxide 200 mg/L and Fe2+ 100 mg/L and reaction time was 30 minutes. The total TOC reduction were about 15.8∼22.4% with same test condition and difference between the overall removal rate and BOD/COD ratio after Fenton's oxidation estabilished in the biodegradation and otherwise meets the discharge standard or reuse for cooling tower make-up water.

  • PDF

Electrical Properties of Thickness-Vibration-Mode Multilayer Piezoelectric Transformer using Low Temperature Sintering (Pb,Ca,Sr,)(Ti,Mn,Sb)O3 Ceramics (저온소결 (Pb,Ca,Sr,)(Ti,Mn,Sb)O3 세라믹스를 이용한 두께진동모드 적층 압전 변압기의 전기적 특성)

  • Yoo, Ju-Hyun;Yoo, Kyung-Jin;Kim, Do-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.948-952
    • /
    • 2007
  • In this study, a low temperature sintering multilayer piezoelectric transformer for a DC-DC converter was manufactured using $(Pb,Ca,Sr,)(Ti,Mn,Sb)O_3$ ceramics. Its electrical properties were investigated according to the variation in frequency and load resistance. The voltage step-up ratio of the multilayer piezoelectric transformer showed a maximum value at a resonant frequency of input part and increased with an increase of load resistance. The efficiency of the multilayer piezoelectric transformer showed the highest value at a load resistance of 17 $\Omega$. The output power was increased with increasing input voltage. Temperature increase of the multilayer piezoelectric transformer was increased with the increase of output power. At the load resistance of 17 $\Omega$, the multilayer piezoelectric transformer showed the temperature rises of about $20^{\circ}C$ at the output power of 18 W, and stable driving characteristics.

Bidirectional Flyback Converter Design Methodology for Differential Power Processing Modules in PV Applications (PV 시스템의 차동 전력 조절기 모듈용 양방향 플라이백 컨버터 설계 방법)

  • Park, Seungbin;Kim, Mina;Jeong, Hoejeong;Kim, Taewon;Kim, Katherine A.;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.379-387
    • /
    • 2019
  • A bidirectional flyback converter is a suitable topology for use in a PV-to-bus differential power processing (DPP) module for PV applications due to its electrical isolation capability, bidirectional power transfer, high step-up ratio, and simple circuit structure. However, the bidirectional flyback converter design should consider the effect of the output-side power switch utilized for bidirectional operation compared with that of the conventional flyback converter. This study presents the structure and design methodology of the bidirectional flyback converter for a PV DPP module. Magnetizing inductance is designed by calculating the power loss of converter components within the rated load range under the discontinuous conduction mode, which is unaffected by the reverse recovery characteristics of the anti-parallel diode of the output-side power switch. The validity of the proposed design methodology is verified using a 25 W bidirectional flyback converter prototype. The operational principles and the performance of the DPP operation are verified using practical DPP modules consisting of bidirectional flyback converters implemented according to the proposed design methodology.

Robotic-assisted gait training applied with guidance force for balance and gait performance in persons with subacute hemiparetic stroke

  • Son, Dong-Wook;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.3
    • /
    • pp.106-112
    • /
    • 2017
  • Objective: Robot assisted gait training is implemented as part of therapy for the recovery of gait patterns in recent clinical fields, and the scope of implications are continuously increasing. However clear therapy protocols of robot assisted gait training are insufficent. The purpose of this study was to investigate the effects of robot-assisted gait training applied with guidance force on balance and gait performance in persons with hemiparetic stroke. Design: Two group pre-test post-test design. Methods: Nineteen persons were diagnosed with hemiparesis following stroke participated in this study. The participants were randomly assigned to the unilateral guidance group or bilateral guidance group to conduct robot-assisted gait training. All participants underwent robot-assisted gait training for twelve sessions (30 min/d, 3 d/wk for 4 weeks). They were assessed with gait parameters (gait velocity, cadence, step length, stance phase, and swing phase) using Optogait. This study also measured the dynamic gait index (DGI), the Berg balance scale (BBS) score, and timed up and go (TUG). Results: After training, BBS scores were was significantly increased in the bilateral training group than in the unilateral guidance group (p<0.05). Spatiotemporal parameters were significantly changed in the bilateral training group (gait speed, swing phase ratio, and stance phase ratio) compared to the unilateral training group (p<0.05). Conclusions: The results of this study suggest that robot-assisted gait training show feasibility in facilitating improvements in balance and gait performance for subacute hemiparetic stroke patients.

The Effects of Somatosensory Training on the Spatiotemporal Gait Parameters and Balance in Patients with Stroke (체성감각 훈련이 뇌졸중 환자의 시공간적 보행요소 및 균형에 미치는 효과)

  • Chae, Jung-Byung;Lee, Moon-Hwan
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.4
    • /
    • pp.587-596
    • /
    • 2010
  • Purpose : This study was performed to investigate the effects of somatosensory training on the spatiotemporal gait parameters and balance in patients with stroke patients. Methods : 24 stroke survivors were allocated in this study, and randomly divided into experimental(n=12) and control group(n=12), independently. Experimental group was applied somatosensory training program plus conventional physical therapy, and control group was applied only conventional physical therapy. All subjects were administered for 30 minutes per day during 8 weeks(5 times a week). Results : Spatiotemporal parameters of gait were significant difference between pre and post intervention in experimental group, except of step length asymmetry ratio(SLAR) and single support time asymmetry ratio (SSAR)(p<.05). But control group had no statistical significance(p>.05). And also there was significant difference between experimental and control group(p<.05), except of cadence and SSAR(p>.05). Balance parameters were significant difference between pre and post intervention in experimental group(p<.05). But control group had no statistical significance(p>.05). And experimental timed up and go test was significantly decreased than control group(p<.05), but berg balance scale and functional reach test were not significant difference between experimental and control group(p>.05). Conclusion : This study was suggested that somatosensory training has effectiveness on the spatiotemporal gait parameters and balance in patients with stroke survivors. So this therapeutic intervention will be effectivelyapply to the stroke survivors in the clinical setting.

A Study on the Improvement of Voltage Measuring Method of 22.9 kV-y Distribution Lines (22.9 kV-y 배전선로의 전압계측방법 개선에 관한 연구)

  • Kil, Gyung-Suk;Song, Jae-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.293-299
    • /
    • 1998
  • An objective of this study is to develop a voltage measuring device that uses a gas-filled switch (GS) on 22.9 kV-y extra-high voltage distribution lines. The voltage measuring device proposed in this paper is a kind of capacitive divider which consists of a detecting electrode attached outside of the bushing of GS, an impedance matching circuit, and a voltage buffer. It can be easily installed in an established GS without changing the structure. For the calibration and application investigations, the voltage measuring device was set up in the 25.8 kV 400 A GS, and a step pulse generator having 5 ns rise time is used. As a result, it was found that the frequency bandwidth of the voltage measuring device ranges from 1.35 Hz to about 13 MHz. The error of voltage dividing ratio which is evaluated by the commercial frequency voltage of 60 Hz was less than 0.2%. In addition, voltage dividing ratio in the commercial frequency voltage and in a non-oscillating impulse voltage were compared, and their deviation were less than 0.7%.

  • PDF

Surface Treatment Effect on Electrochemical characteristics of Al Alloy for ship

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.149-149
    • /
    • 2017
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the seawater upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification showed a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Variations in Carbon Content and Sintered Density of M3/2 Grade High Speed Steel Powders on Metal Injection Molding Process (사출성형한 M3/2계 고속도공구강 분말의 탄소함량 및 소결밀도 변화)

  • 이광희
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.170-178
    • /
    • 1997
  • An investigation was performed to apply the M3/2 grade high speed steel for metal injection molding using both prealloyed and elementally blended powders. The injected samples were subjected to a debinding step in $H_2/N_2$ gas atmosphere at a ratio that affected the carbon content of the material. The carbon content ranged from 1.4wt.% to 1.43wt%. with increasing $H_2$ content up to 80% $H_2$ in $H_2/N_2$ atmosphere for the prealloyed powders. The carbon contents of the elementally blended powders exhibited 1.44wt.% and 1.62wt.% at 10% $H_2/N_2$ and 20% $H_2/N_2$ gas, respectively. This level decreased to 0.17wt.% upon increasing the $H_2$ content. The sintered density of both powders increased rapidly as the temperature reached the liquid phase forming temperature. After forming the liquid phase, the density rapidly increased to the optimum sintering temperature for the prealloyed powders, whereas the density of mixed elemental powders goes up slowly to the optimum sintering temperature. The optimum sintering temperature and density are 126$0^{\circ}C$ and 97.3% for the prealloyed powders and 128$0^{\circ}C$ and 96.9% for the elementally blended powders, respectively. The microstructure of the specimen at the optimum sintering temperature consisted of fine grains with primary carbides of MC and $M_6C$ type for the prealloyed powders. The elementally blended powders exhibited coarse grains with eutectic carbides of MC, $M_2C$ and $M_6C$ type.

  • PDF

Synthesis and Characteristics of Organic Soluble Polyaniline by Emulsion Polymerization (유화 중합법에 의한 유기 용매 가용형 폴리아닐린의 합성 및 그 특성)

  • 김진열;권시중;한성원;김응렬
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.549-554
    • /
    • 2003
  • Emeraldine salt of polyaniline-dodecylbenzenesulfdnic acid (PANI-DBSA) in organic solvents such as toluene and xylene was obtained by a direct one-step emulsion polymerization technique. When the molar ratio of DBSA to aniline monomer was 1.5:1, its solubility and electric property showed a maximum value and then the solid contents of PANI-DBSA was 8 wt% in toluene. The cast film of PANI-DBSA with no binder was obtained on glass or plastic substrates under ambient conditions. PANI solution can be also easily blended with polyurethane and polystyrene polymers in toluene. Improved electrical performance up to 5 S/cm was achieved with good light-transmittance up to 70% at 500 m thickness. They also showed more homogeneous morphology than that prepared with PANI-DBSA kom aqueous dispersion polymerization. The partially dispersed PANI-DBSA showed particles sizes of 50-400 m in organic solvents and their XRD pattern were observed from the powder sample.