• 제목/요약/키워드: step-up converter

검색결과 258건 처리시간 0.027초

비대칭 PWM 방식을 이용한 이중 승압 기능을 갖는 PFC 컨버터 (Double Step-Up PFC Converter Using Asymmetrical PWM Scheme)

  • 김영진;임재성;차헌녕
    • 전력전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.8-14
    • /
    • 2023
  • This paper proposes a PFC converter with a double step-up function using an asymmetrical PWM scheme. For the conventional PWM scheme, the input voltage range, which maintains a double step-up function, is limited because the proposed converter has different voltage gains and characteristics when the duty ratio(D) is less than 0.5. The proposed converter has a constant voltage gain regardless of the magnitude of the input voltage and can achieve output voltage balancing by using the asymmetrical PWM scheme. A 1.6-kW prototype of the proposed converter was built and tested to verify the performance.

태양광 마이크로 인버터를 위한 탭인덕터 부스트 및 강압형 컨버터 캐스케이드 타입 저가형 고효율 전력변환기 (Low-Cost High-Efficiency Two-Stage Cascaded Converter of Step-Down Buck and Tapped-Inductor Boost for Photovoltaic Micro-Inverters)

  • 장종호;신종현;박종후
    • 전력전자학회논문지
    • /
    • 제19권2호
    • /
    • pp.157-163
    • /
    • 2014
  • This paper proposes a two-stage step-down buck and a tapped-inductor boost cascaded converter for high efficiency photovoltaic micro-inverter applications. The proposed inverter is a new structure to inject a rectified sinusoidal current into a low-frequency switching inverter for single-phase grid with unity power factor. To build a rectified-waveform of the output current. the converter employs both of a high efficiency step-up and a step-down converter in cascade. In step-down mode, tapped inductor(TI) boost converter stops and the buck converter operates alone. In boost mode, the TI converter operates with the halt of buck operation. The converter provides a rectified current to low frequency inverter, then the inverter converts the current into a unity power-factor sinusoidal waveform. By applying a TI, the converter can decrease the turn-on ratios of the main switch in TI boost converter even with an extreme step-up operation. The performance validation of the proposed design is confirmed by an experimental results of a 120W hardware prototype.

Analysis and Implementation of LC Series Resonant Converter with Secondary Side Clamp Diodes under DCM Operation for High Step-Up Applications

  • Jia, Pengyu;Yuan, Yiqin
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.363-379
    • /
    • 2019
  • Resonant converters have attracted a lot of attention because of their high efficiency due to the soft-switching performance. An isolated high step-up converter with secondary-side resonant loops is proposed and analyzed in this paper. By placing the resonant loops on the secondary side, the current stress for the resonant capacitors is greatly reduced. The power loss caused by the equivalent series resistance of the resonant capacitor is also decreased. Clamp diodes in parallel with the resonant capacitors ensure a unique discontinuous current mode in the converter. Under this mode, the active switches can realize soft-switching during both turn-on and turn-off transitions. Meanwhile, the reverse-recovery problems of diodes are also alleviated by the leakage inductor. The converter is essentially a step-up converter. Therefore, it is helpful for decreasing the transformer turn-ratio when it is applied as a high step-up converter. The steady-state operation principle is analyzed in detail and design considerations are presented in this paper. Theoretical conclusions are verified by experimental results obtained from a 500W prototype with a 35V-42V input and a 400V output.

A Novel Clamp-Mode Coupled-Inductor Boost Converter with High Step-Up Voltage Gain

  • Tattiwong, Kaweewat;Bunlaksananusorn, Chanin
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.809-819
    • /
    • 2017
  • In this paper, a new coupled inductor DC-DC converter with a high step-up voltage gain is proposed. It is developed from a clamp-mode coupled-inductor boost converter by incorporating an additional capacitor and diode. The proposed converter is able to achieve the higher voltage gain, while still retaining the switch voltage clamp property of its predecessor. In the paper, operation and analysis of the proposed converter are described. Experimental results from a prototype converter are presented to verify the validity of the analysis. The prototype circuit attains the highest efficiency of 92.8%.

An Isolated High Step-Up Converter with Non-Pulsating Input Current for Renewable Energy Applications

  • Hwu, Kuo-Ing;Jiang, Wen-Zhuang
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1277-1287
    • /
    • 2016
  • This study proposes a novel isolated high step-up galvanic converter, which is suitable for renewable energy applications and integrates a boost converter, a coupled inductor, a charge pump capacitor cell, and an LC snubber. The proposed converter comprises an input inductor and thus features a continuous input current, which extends the life of the renewable energy chip. Furthermore, the proposed converter can achieve a high voltage gain without an extremely large duty cycle and turn ratio of the coupled inductor by using the charge pump capacitor cell. The leakage inductance energy can be recycled to the output capacitor of the boost converter via the LC snubber and then transferred to the output load. As a result, the voltage spike can be suppressed to a low voltage level. Finally, the basic operating principles and experimental results are provided to verify the effectiveness of the proposed converter.

Two-Switch Non-Isolated Step-Up DC-DC Converter

  • Nguyen, Minh-Khai;Choi, Youn-Ok;Cho, Geum-Bae;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.651-661
    • /
    • 2018
  • This paper suggests a new non-isolated high voltage gain DC-DC converter with two switches. The proposed two-switch converter has the following characteristics: a high voltage gain, a continuous input current with a small ripple, a reduction in the size of the inductor, and a simple circuit with only a few elements. A theoretical analysis, guidelines for parameter selection, and a comparison with conventional non-isolated high step-up converters are presented. A prototype of 250 W is set up to demonstrate the correctness of the proposed converter. Results obtained from simulations and experiments are presented.

승압형 PWM 싸이크로 콘버터에 관한 연구 (A Study on the Step-up PWM Cycloconverter)

  • 박민호;홍순찬;김기택
    • 대한전기학회논문지
    • /
    • 제38권6호
    • /
    • pp.431-440
    • /
    • 1989
  • This paper proposes a new PWM cycloconverter which can step up input voltage. With input reactors ac power supply acts as current source, and with output capacitors the balanced output voltage is build-up. The converter is modeled with fourth order state equation using dq transformation and the steady state characteristics are evaluated. It is shown that the proposed converter can generate the output voltage 2-5 times greater than input voltage. The output voltage and input current have sinusoidal and smooth waveforms and the converter is capable of voltage build-up. The characteristics of the proposed converter is verified simulation and experiment.

  • PDF

새로운 Topology 방식의 스텝 업(Step-Up) 컨버터에 관한 연구 (A Study on the Step-Up Converter with the New Topology Method)

  • 정해영
    • 한국전자통신학회논문지
    • /
    • 제15권5호
    • /
    • pp.889-896
    • /
    • 2020
  • 일반적으로 스텝 업(Step-up) 컨버터는 Boost 컨버터, Buck-Boost 컨버터, Flyback 컨버터, Push-Pull 컨버터 등 다양하며 이 중에서 Boost 컨버터는 매우 간단한 형태로 가장 널리 사용되는 스텝 업(Step-up) 컨버터이다. 하지만, Boost 컨버터는 DCM 동작, 큰 리플 문제 및 RHPZ 문제 등을 가지고 있다. 이러한 문제를 해결하기 위해 새로운 Topology를 적용한 컨버터들이 제시되었는데 그 중 KY 컨버터는 Boost 컨버터의 DCM 동작, 큰 리플 문제 및 RHPZ 문제 등을 개선하였다. 그러나 기존의 KY 컨버터는 Boost 컨버터보다 전압 이득이 상대적으로 낮은 단점이 있다. 따라서 본 논문에서는 기존의 KY 컨버터의 장점이 있으면서 낮은 전압 이득 문제를 해결한 새로운 Topology의 KY 컨버터를 제안하였다.

Single-Phase Z-Source Matrix Converter (SZMC) with Output Voltage Boost Capability

  • Nguyen, Minh-Khai;Jung, Young-Gook;Lim, Young-Cheol
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.234-237
    • /
    • 2008
  • This paper deals with a new single-phase Z-source matrix converter (SZMC) topology. Unlike other conventional configurations, the proposed SZMC is not only a step-up frequency converter but also a step-down frequency converter and a voltage boost capability. Thus, the proposed SZMC is also called a frequency step-up/down and voltage step-up converter. A safe-commutation strategy is used in SZMC as free-wheeling operation to eliminate voltage spikes on switches. The operating principles and experimental results of the proposed SZMC are presented.

  • PDF

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.