• Title/Summary/Keyword: step-by-step learning

Search Result 672, Processing Time 0.031 seconds

An Analysis of Learning Efficiency of Computer Programming Classes with Peer Tutoring (피어 튜터링을 적용한 컴퓨터 프로그래밍 수업의 학습 효과 분석)

  • Ahn, You-Jung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.243-244
    • /
    • 2012
  • 본 논문에서는 단계별 학습이 필요한 컴퓨터 프로그래밍 수업에 피어 튜터링 제도를 적용하여 정규 수업과 병행하여 운영하고 피어 튜터링에 참여한 학습자들의 참여 전과 후의 성적 변화를 비교해봄으로써 피어 튜터링 제도가 단계별 학습에 얼마나 효과적인지를 분석해본다.

  • PDF

BEGINNER'S GUIDE TO NEURAL NETWORKS FOR THE MNIST DATASET USING MATLAB

  • Kim, Bitna;Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.26 no.2
    • /
    • pp.337-348
    • /
    • 2018
  • MNIST dataset is a database containing images of handwritten digits, with each image labeled by an integer from 0 to 9. It is used to benchmark the performance of machine learning algorithms. Neural networks for MNIST are regarded as the starting point of the studying machine learning algorithms. However it is not easy to start the actual programming. In this expository article, we will give a step-by-step instruction to build neural networks for MNIST dataset using MATLAB.

The Effects of the Astronomical Learning Program Using IIM on Science Process Skills and Scientific Attitudes in the Elementary Scientific Gifted (IIM을 적용한 천문학습 프로그램 개발.적용이 초등과학영재 학생의 과학탐구능력과 과학적 태도에 미치는 효과)

  • Shin, Myeung-Ryeul;Lee, Yong-Seob
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.2
    • /
    • pp.337-356
    • /
    • 2011
  • The purpose of this study was to find out the effect of the Astronomical Learning Program Using IIM on Science Process Skills and Scientific Attitudes in the elementary scientific gifted students. For this purpose, this research developed the Astronomical Learning Program Using IIM. This program was totally consisted 7 lessen. There was 7 part in this program. It contained Select the subject (step 1), The aim settings (step 2), Collect the data (step 3), Doing inquiry (step 4), An aim evaluation (step 5), Making a report (step 6), Announcing (step 7). To find the effect of the Astronomical Learning Program Using IIM on Science Process Skills and Scientific Attitudes in the elementary scientific gifted students. 20 participants was selected. These students were attended at a scientific gifted class(3rd grade) of an elementary school located in Ulsan. First, Science Process Skills test and Scientific Attitudes test was used to find the effect of the Astronomical Learning Program Using IIM. And the results were analyzed by SPSS WIN 18.0. The results of this study were as follows. First, the Astronomical Learning Program Using IIM was a positive effects on Science Process Skills of elementary scientific gifted students (F=4.920, p=.021). Second, the Astronomical Learning Program Using IIM was a positive effects on Scientific Attitudes of the elementary scientific gifted students (F=11.244, p=.001). According to this research, the Astronomical Learning program Using IIM was verified to improve Science Process Skills and Scientific Attitudes on the elementary scientific gifted students. It will be contribute on the curriculum construction of the gifted school or gifted class.

Development and Distribution of Deep Fake e-Learning Contents Videos Using Open-Source Tools

  • HO, Won;WOO, Ho-Sung;LEE, Dae-Hyun;KIM, Yong
    • Journal of Distribution Science
    • /
    • v.20 no.11
    • /
    • pp.121-129
    • /
    • 2022
  • Purpose: Artificial intelligence is widely used, particularly in the popular neural network theory called Deep learning. The improvement of computing speed and capability expedited the progress of Deep learning applications. The application of Deep learning in education has various effects and possibilities in creating and managing educational content and services that can replace human cognitive activity. Among Deep learning, Deep fake technology is used to combine and synchronize human faces with voices. This paper will show how to develop e-Learning content videos using those technologies and open-source tools. Research design, data, and methodology: This paper proposes 4 step development process, which is presented step by step on the Google Collab environment with source codes. This technology can produce various video styles. The advantage of this technology is that the characters of the video can be extended to any historical figures, celebrities, or even movie heroes producing immersive videos. Results: Prototypes for each case are also designed, developed, presented, and shared on YouTube for each specific case development. Conclusions: The method and process of creating e-learning video contents from the image, video, and audio files using Deep fake open-source technology was successfully implemented.

A Development and Application of Play Learning Program for the Complement Number Concept (보수 개념 신장을 위한 놀이 학습 프로그램의 개발 및 적용)

  • Jeong, Ji In;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.2
    • /
    • pp.193-213
    • /
    • 2016
  • This study has two goals. The First is to develop and apply a step-by-step program and the degree to which students' mathematical skills. The second is to analyze mathematical attitude change around the first grade students was done. The program for learning complement number is composed of series of 5 steps and 11 classes. Play for learning complement number, taking into account the difficulty of the learning steps 1-5 are organized. First step is composed of the classes which fragmented pieces of shapes to complete the entire geometry with fun activities for the entire part of the concept of learning and it maintenance concepts and can naturally learn by associating step. In second step, tools to take advantage of the real world and collecting the conservative concept. 3rd steps is to repair the mathematical concept of the parish in the learning stage of expansion. 4th step is halrigalri, number cards, making ten games etc. 5th step is to verify the concept of complement number and number operation ability. The concept of complement number through fun activities can improve students' mathematical skills, and mathematical attitude change. Early in the program, students use the finger to throw acid in the process. Simple addition and subtraction calculations may take a long time and error, but more and more we progress through the program using the fingers is eliminated and a more complex form calculations was not difficult to act out.

Multimedia Learning Contents Retrieval Based on XML/RDF and SMIL (XML/RDF와 SMIL에 기반한 멀티미디어 교육 컨텐츠 검색)

  • Choi, Byung-Uk;Ryu, Jung-Woo;Cho, Jung-Won
    • The Journal of Korean Association of Computer Education
    • /
    • v.5 no.3
    • /
    • pp.45-58
    • /
    • 2002
  • In this paper, we propose the new approach with which user is able to retrieve the massive volume of learning contents in the multimedia learning system. In order to secure the compatibility of learning contents. we apply the SMIL on the basis of XML, so that the integration and the synchronization of multimedia components can be available to realize in the mode of standardization. We also implement the multimedia learning contents represented by the RDF on the IEEE LOM. We present the two step-retrieval method to get precise results. In the first step, user can find with high speed and ease whatever contents user wants to take a look through metadata in the system. The second step is followed that by using the time information of SMIL, user can retrieve the interest synchronous parts in the result of the first step. This innovative retrieval approach applied in the multimedia learning system is highly expected to make a meaningful contribution to implement the principles of self-directed learning in the learning environments, where user can use and revise the retrieval results for their own learning purpose and make further the active knowledge-reconstruction.

  • PDF

Development of a Play-Learning Model in Science Museum (과학관 놀이-학습 모형 개발)

  • Kwon, Yi-Young;Jeong, Eunyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.2
    • /
    • pp.191-202
    • /
    • 2016
  • In this study, a science museum teaching-learning model was developed with emphasis on play. In order to do this, the models of factor-centered museum education and process-centered museum education were reviewed and characteristics of science museum education were considered. The model developed in this study is called 'Play-Learning Model in Science Museum', and 'play' is defined as activities to achieve the mission in accordance with methods and rules set by individuals or small groups including scaffolding and play is divided into competition, simulation, and chance. 'Play-Learning Model in Science Museum' emphasizes learning using the articles on exhibition, scaffolding and interaction in small groups, and play. The model consists of four steps: 'Preparation', 'Exploring the exhibits', 'Experience', and 'Summary of learning content'. In the 'Preparation' step, the students form related knowledge and are ready to play. The 'Exploring the exhibits' step is the core step of this model, and entails the students solving problems in the mission by interacting with members of the small group. When they cannot find resolution, they get help. In the 'Experience' step, hands-on activities related to the prior step are included. In the 'Summary of learning content' step, the students summarize what they learned while playing. As science museum education is implemented in a variety of forms, continuous research about the science museum learning model and development of various programs are needed.

A Study on Learning Models Personalized for High-Leveled Learners in Computer Programming Classes (컴퓨터 프로그래밍 수업에서 상위 학습자들의 맞춤형 학습 유형 탐구)

  • Ahn, You-Jung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.245-246
    • /
    • 2012
  • 본 논문에서는 컴퓨터 프로그래밍 수업에서 상위 수준 학습자들을 위한 맞춤형 학습 모형 사례들을 살펴본다. 동일한 학습자들에게 여러 가지 학습 모형들을 적용하였을 때 보다 효과적인 학습 유형이 어떤 것인지 탐색해보고 그 학습 효과를 검증하기 위해 이들의 성적 변화를 분석해봄으로써 상위 수준 학습자에 적합한 맞춤형 학습 모형을 탐구해가는데 본 연구의 목적이 있다.

  • PDF

Effects of the Astronomical Learning Program using SGIM on Metacognition and Science Process Skills in the Elementary Scientific Gifted (SGIM을 적용한 천문학습 프로그램이 초등과학영재의 메타인지와 과학탐구능력에 미치는 효과)

  • Shin, Myeung-Ryeul;Lee, Yong-Seob
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.3
    • /
    • pp.719-739
    • /
    • 2011
  • The purpose of this study was to find the effect of the astronomical learning program using SGIM on metacognition and science process skills in the elementary scientific gifted students. For this purpose, this research developed the astronomical learning program using SGIM. This program was totally consisted 9 lessen. there was 6 part in this program. It contained select the subject and small grouping (step 1-2), planing inquiry (step 3), doing inquiry (step 4-6), making a report (step 7), announcing (step 8), evaluation (step 9). To find the effect of the astronomical learning program using sgim on metacognition and science process skills in the elementary scientific gifted students. 20 participants was selected. These students were attended at a scientific gifted class (3rd grade) of an elementary school located in Ulsan. First, metacognition test and science process skills test was used to find the effect of the astronomical learning program using SGIM. And the results were analyzed by SPSSWIN 18.0. The results of this study were as follows. First, the astronomical learning program using SGIM was a positive effects on metacognition of the elementary scientific gifted students (t=3.371, p=.001). Second, the astronomical learning program using SGIM was a positive effects on science process skills of the elementary scientific gifted students (t=3.104, p=.021). According to this research, the astronomical learning program using SGIM was verified to improve metacognition and science process skills on the elementary scientific gifted students. It will be contribute on the curriculum construction of the gifted school or gifted class.

Step-Size Control for Width Adaptation in Radial Basis Function Networks for Nonlinear Channel Equalization

  • Kim, Nam-Yong
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.600-604
    • /
    • 2010
  • A method of width adaptation in the radial basis function network (RBFN) using stochastic gradient (SG) algorithm is introduced. Using Taylor's expansion of error signal and differentiating the error with respect to the step-size, the optimal time-varying step-size of the width in RBFN is derived. The proposed approach to adjusting widths in RBFN achieves superior learning speed and the steady-state mean square error (MSE) performance in nonlinear channel environment. The proposed method has shown enhanced steady-state MSE performance by more than 3 dB in both nonlinear channel environments. The results confirm that controlling over step-size of the width in RBFN by the proposed algorithm can be an effective approach to enhancement of convergence speed and the steady-state value of MSE.