• Title/Summary/Keyword: step-by-step BEM analysis

Search Result 9, Processing Time 0.018 seconds

A step-by-step approach in the time-domain BEM formulation for the scalar wave equation

  • Carrer, J.A.M.;Mansur, W.J.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.683-696
    • /
    • 2007
  • This article is concerned with the presentation of a time-domain BEM approach applied to the solution of the scalar wave equation for 2D problems. The basic idea is quite simple: the basic variables of the problem at time $t_n$ (potential and flux) are computed with the results related to the potential and to its time derivative at time $t_{n-1}$ playing the role of "initial conditions". This time-marching scheme needs the computation of the potential and its time derivative at all boundary nodes and internal points, as well as the entire discretization of the domain. The convolution integrals of the standard time-domain BEM formulation, however, are not computed; the matrices assembled, only at the initial time interval, are those related to the potential, flux and to the potential time derivative. Two examples are presented and discussed at the end of the article, in order to verify the accuracy and potentialities of the proposed formulation.

Two-dimensional Redistribution of Impurity considering Thermal Oxidation in silicon using BEM (BEM을 이용하여 열산화를 고려한 실리콘 내에서 불순물의 2차원 재분포에 관한 연구)

  • Kim, Hun;Hwang, Ho-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.370-374
    • /
    • 1988
  • This paper is concerned with the investigation of the impurity redistribution process in a two step diffusion. In integrated circuit technology, two step boron diffusion involving a deposition step followed by a drive-in step in commonly encounted. The drive-in process is usually performed in oxidizing atmosphere resulting in redistribution of impurity (boron) within the semiconductor. This paper proposes a new numerical analysis method; Bounary Element Method to determine impurity profile at the arbitrary point in domain by its coordinate and boundary value.

  • PDF

Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure

  • Soares, Delfim Jr.;Goncalves, Kleber A.;de Faria Telles, Jose Claudio
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.263-277
    • /
    • 2015
  • This paper presents a coupled FEM-BEM strategy for the numerical analysis of elastodynamic problems where infinite-domain models and complex heterogeneous media are involved, rendering a configuration in which neither the Finite Element Method (FEM) nor the Boundary Element Method (BEM) is most appropriate for the numerical analysis. In this case, the coupling of these methodologies is recommended, allowing exploring their respective advantages. Here, frequency domain analyses are focused and an iterative FEM-BEM coupling technique is considered. In this iterative coupling, each sub-domain of the model is solved separately, and the variables at the common interfaces are iteratively updated, until convergence is achieved. A relaxation parameter is introduced into the coupling algorithm and an expression for its optimal value is deduced. The iterative FEM-BEM coupling technique allows independent discretizations to be efficiently employed for both finite and boundary element methods, without any requirement of matching nodes at the common interfaces. In addition, it leads to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-domain, may be employed), which do not need to be treated (inverted, triangularized etc.) at each iterative step, providing an accurate and efficient methodology.

Development of Algorithm for Predicting Fretting Wear (프레팅 마멸 예측을 위한 알고리즘 개발)

  • Cho, Yong-Joo;Kim, Tae-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.983-989
    • /
    • 2011
  • A numerical algorithm for predicting fretting wear was developed using the boundary element method (BEM). A contact analysis was performed numerically using the relation between the elastic displacement and uniformly distributed loading of a rectangular patch on a semi-infinite solid. Geometrical updating based on nodal wear depths was performed. The wear depths were computed using the Archard's equation for sliding wear. In order to investigate the efficiency of BEM for predicting fretting wear, a problem involving a two-dimensional cylinder on a flat contact was analyzed, comparing it with the simulation model proposed by McColl et al. that was based on the finite element method. The developed method was then applied to the analysis of a spherical contact and it was shown that the developed simulation technique could efficiently predict fretting wear. Moreover, the effect of a step cycle on the solution obtained by the developed method was investigated.

Seismic response of a rigid foundation embedded in a viscoelastic soil by taking into account the soil-foundation interaction

  • Messioud, Salah;Sbartai, Badreddine;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.887-903
    • /
    • 2016
  • This study analyses the seismic response of a three-dimensional (3-D) rigid massless square foundation resting or embedded in a viscoelastic soil limited by rigid bedrock. The foundation is subjected to harmonic oblique seismic waves P, SV, SH and R. The key step is the characterization of the soil-foundation interaction by computing the impedance matrix and the input motion matrix. A 3-D frequency boundary element method (BEM) in conjunction with the thin layer method (TLM) is adapted for the seismic analysis of the foundation. The dynamic response of the rigid foundation is solved from the wave equations by taking into account the soil-foundation interaction. The solution is formulated using the frequency BEM with the Green's function obtained from the TLM. This approach has been applied to analyze the effect of soilstructure interaction on the seismic response of the foundation as a function of the kind of incident waves, the angles of incident waves, the wave's frequencies and the embedding of foundation. The parametric results show that the non-vertical incident waves, the embedment of foundation, and the wave's frequencies have important impact on the dynamic response of rigid foundations.

Vibration and Acoustic Analysis of Balanced Armature Micro Speaker (밸런스드 아마추어 초소형 스피커의 진동 및 음향특성 연구)

  • Ko, Dong Shin;Hur, Duk Jae;Kwon, Sang Yup;Lee, Sung Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • This paper describes the development process for vibration and acoustic characteristics of a balanced armature speaker. The design parameters were chosen in consideration of the influence of the bending stiffness of balanced armature which is the form of a cantilever structure in the speaker. For study of the performance of the speaker according to the design parameters, in the first step, we analyzed the characteristics of the velocity of the diaphragm to the electrical input. Next step, acoustic characteristics were analyzed by structural-acoustic coupled analysis. And the reliability of the analysis was verified by comparing the result of analysis with test results. Finally, we proposed a design method for implementing an enhanced balanced armature speakers through analysis method.

A comparison of the transmission losses of two-dimensional dissipative silencers predicted by analytical method and BEM (이론적 해 및 경계요소법에 의한 2차원 흡음형 소음기의 전달 손실치 예측 비교)

  • 김회전;이정권;정지훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1001-1004
    • /
    • 2002
  • Accurate prediction of the transmission loss of dissipative silencers has been considered difficult due to the ambiguity and complexity in the physical properties of sound absorbing materials. Additional difficulty lies in the fact that the analytical calculation of the propagation constant is unknown yet. In this paper. as a first step toward obtaining the Propagation constant and thus predicting the transmission loss, an approximation equation stemming from the wave analysis in the lined interior has been derived. Such an analytical solution and numerical solution using the boundary element method are compared for a two-dimensional simple dissipative silencer under the assumption of the locally reacting sound absorbent.

  • PDF

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF

Boundary-Based Shape Design Sensitivity Analysis of Elastostatics Problems (정탄성학 문제에서 경계 기반 형상설계 민감도 해석)

  • Won Jun-Ho;Choi Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.149-156
    • /
    • 2006
  • A boundary-based design sensitivity analysis(DSA) technique is proposed for addressing shape optimization issues in the elastostatics problems. Sensitivity formula is derived based on the continuum formulation in a boundary integral form, which consists of the boundary solutions and shape variation vectors. Though the boundary element method(BEM) has been mainly used to obtain the boundary solution, the FEM is used in this paper because this is much more popular, and has greatly improved meshing and computing power recently. The advantage of the boundary DSA is that the shape variation vectors, which are also known as design velocity fields, are needed only on the boundary. Then, the step for determining the design velocity field over the whole domain, which was necessary in the domain-based DSA, is eliminated, making the process easy to implement and efficient. Problem of fillet design is chosen to illustrate the efficiency of the proposed method. Accuracy of the sensitivity is good with this method even by employing the free mesh for the FE analysis.