• 제목/요약/키워드: stem model

검색결과 597건 처리시간 0.028초

Defective Self-Renewal and Differentiation of GBA-Deficient Neural Stem Cells Can Be Restored By Macrophage Colony-Stimulating Factor

  • Lee, Hyun;Bae, Jae-sung;Jin, Hee Kyung
    • Molecules and Cells
    • /
    • 제38권9호
    • /
    • pp.806-813
    • /
    • 2015
  • Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene (GBA), which encodes the lysosomal enzyme glucosylceramidase (GCase). Deficiency in GCase leads to characteristic visceral pathology and lethal neurological manifestations in some patients. Investigations into neurogenesis have suggested that neurodegenerative disorders, such as GD, could be overcome or at least ameliorated by the generation of new neurons. Bone marrowderived mesenchymal stem cells (BM-MSCs) are potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. Our objective was to examine the mechanism of neurogenesis by BM-MSCs in GD. We found that neural stem cells (NSCs) derived from a neuronopathic GD model exhibited decreased ability for self-renewal and neuronal differentiation. Co-culture of GBA-deficient NSCs with BM-MSCs resulted in an enhanced capacity for self-renewal, and an increased ability for differentiation into neurons or oligodendrocytes. Enhanced proliferation and neuronal differentiation of GBA-deficient NSCs was associated with elevated release of macrophage colony-stimulating factor (M-CSF) from BM-MSCs. Our findings suggest that soluble M-CSF derived from BM-MSCs can modulate GBA-deficient NSCs, resulting in their improved proliferation and neuronal differentiation.

Neuropeptide Y-based recombinant peptides ameliorate bone loss in mice by regulating hematopoietic stem/progenitor cell mobilization

  • Park, Min Hee;Kim, Namoh;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • 제50권3호
    • /
    • pp.138-143
    • /
    • 2017
  • Ovariectomy-induced bone loss is related to an increased deposition of osteoclasts on bone surfaces. We reported that the 36-amino-acid-long neuropeptide Y (NPY) could mobilize hematopoietic stem/progenitor cells (HSPCs) from the bone marrow to the peripheral blood by regulating HSPC maintenance factors and that mobilization of HSPCs ameliorated low bone density in an ovariectomy-induced osteoporosis mouse model by reducing the number of osteoclasts. Here, we demonstrated that new NPY peptides, recombined from the cleavage of the full-length NPY, showed better functionality for HSPC mobilization than the full-length peptide. These recombinant peptides mediated HSPC mobilization with greater efficiency by decreasing HSPC maintenance factors. Furthermore, treatment with these peptides reduced the number of osteoclasts and relieved ovariectomy-induced bone loss in mice more effectively than treatment with full-length NPY. Therefore, these results suggest that peptides recombined from full-length NPY can be used to treat osteoporosis.

From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications

  • Moon, Sung-Hwan;Bae, Daekyeong;Jung, Taek-Hee;Chung, Eun-Bin;Jeong, Young-Hoon;Park, Soon-Jung;Chung, Hyung-Min
    • International Journal of Stem Cells
    • /
    • 제10권1호
    • /
    • pp.1-11
    • /
    • 2017
  • Human cardiomyocytes (CMs) cease to proliferate and remain terminally differentiated thereafter, when humans reach the mid-20s. Thus, any damages sustained by myocardium tissue are irreversible, and they require medical interventions to regain functionality. To date, new surgical procedures and drugs have been developed, albeit with limited success, to treat various heart diseases including myocardial infarction. Hence, there is a pressing need to develop more effective treatment methods to address the increasing mortality rate of the heart diseases. Functional CMs are not only an important in vitro cellular tool to model various types of heart diseases for drug development, but they are also a promising therapeutic agent for cell therapy. However, the limited proliferative capacity entails difficulties in acquiring functional CMs in the scale that is required for pathological studies and cell therapy development. Stem cells, human pluripotent stem cells (hPSCs) in particular, have been considered as an unlimited cellular source for providing functional CMs for various applications. Notable progress has already been made: the first clinical trials of hPSCs derived CMs (hPSC-CMs) for treating myocardial infarction was approved in 2015, and their potential use in disease modeling and drug discovery is being fully explored. This concise review gives an account of current development of differentiation, purification and maturation techniques for hPSC-CMs, and their application in cell therapy development and pharmaceutical industries will be discussed with the latest experimental evidence.

Potential Therapeutic Strategy in Chronic Obstructive Pulmonary Disease Using Pioglitazone-Augmented Wharton's Jelly-Derived Mesenchymal Stem Cells

  • Park, Jin-Soo;Kim, Hyun Kuk;Kang, Eun-Young;Cho, RyeonJin;Oh, Yeon-Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • 제82권2호
    • /
    • pp.158-165
    • /
    • 2019
  • Background: A recent study reported that mesenchymal stem cells possess potential cellular therapeutic properties for treating patients with chronic obstructive pulmonary disease, which is characterized by emphysema. We examined the potential therapeutic effect of Wharton's Jelly-derived mesenchymal stem cells (WJMSCs), following pretreatment with pioglitazone, in lung regeneration mouse emphysema models. Methods: We used two mouse emphysema models, an elastase-induced model and a cigarette smoke-induced model. We intravenously injected WJMSCs ($1{\times}10^4/mouse$) to mice, pretreated or not, with pioglitazone for 7 days. We measured the emphysema severity by mean linear intercepts (MLI) analysis using lung histology. Results: Pioglitazone pretreated WJMSCs (pioWJMSCs) were associated with greater lung regeneration than non-augmented WJMSCs in the two mouse emphysema models. In the elastase-induced emphysema model, the MLIs were $59.02{\pm}2.42{\mu}m$ (n=6), $72.80{\pm}2.87{\mu}m$ (n=6), for pioWJMSCs injected mice, and non-augmented WJMSCs injected mice, respectively (p<0.01). Both pioWJMSCs and non-augmented WJMSCs showed regenerative effects in the cigarette smoke emphysema model (MLIs were $41.25{\pm}0.98$ [n=6] for WJMSCs and $38.97{\pm}0.61{\mu}m$ [n=6] for pioWJMSCs) compared to smoking control mice ($51.65{\pm}1.36{\mu}m$, n=6). The mean improvement of MLI appeared numerically better in pioWJMSCs than in non-augmented WJMSCs injected mice, but the difference did not reach the level of statistical significance (p=0.071). Conclusion: PioWJMSCs may produce greater lung regeneration, compared to non-augmented WJMSCs, in a mouse emphysema model.

수간곡선식 개발과 국가탄소배출계수를 이용한 졸참나무의 탄소저장량 추정 (Estimation of Carbon Stock by Development of Stem Taper Equation and Carbon Emission Factors for Quercus serrata)

  • 강진택;손영모;전주현;유병오
    • 한국기후변화학회지
    • /
    • 제6권4호
    • /
    • pp.357-366
    • /
    • 2015
  • This study was conducted to estimate carbon stocks of Quercus serrata with drawing volume of trees in each tree height and DBH applying the suitable stem taper equation and tree specific carbon emission factors, using collected growth data from all over the country. Information on distribution area, tree number per hectare, tree volume and volume stocks were obtained from the $5^{th}$ National Forest Inventory (2006~2010), and method provided in IPCC GPG was applied to estimate carbon storage and removals. Performance in predicting stem diameter at a specific point along a stem in Quercus serrata by applying Kozak's model,$d=a_1DBH^{a_2}a_3^{DBH}X^{b_1Z^2+b_2ln(Z+0.001)+b_3{\sqrt{Z}}+b_4e^Z+b_5({\frac{DBH}{H}})}$, which is well known equation in stem taper estimation, was evaluated with validations statistics, Fitness Index, Bias and Standard Error of Bias. Consequently, Kozak's model turned out to be suitable in all validations statistics. Stem volume tables of Quercus serrata were derived by applying Kozak's model and carbon stock tables in each tree height and DBH were developed with country-specific carbon emission factors ($WD=0.65t/m^3$, BEF=1.55, R=0.43) of Quercus serrata. As a result of carbon stock analysis by age class in Quercus serrata, carbon stocks of IV age class (11,358 ha, 36.5%) and V age class (10,432; 33.5%) which take up the largest area in distribution of age class were 957,000 tC and 1,312,000 tC. Total carbon stocks of Quercus serrata were 3,191,000 tC which is 3% compared with total percentage of broad-leaved forest and carbon sequestration per hectare(ha) was 3.8 tC/ha/yr, $13.9tCO_2/ha/yr$, respectively.

다목적선형계획법을 이용한 한국 정보통신 기술분야별 R&D 투자규모결정 모형개발 및 사례연구 (R&D Investment Model for the Information and Telecommunications Technology by Multiple Objective Linear Programming)

  • 이동엽
    • 경영과학
    • /
    • 제16권1호
    • /
    • pp.63-74
    • /
    • 1999
  • This paper presents a R&D investment model for the Information and telecommunications(l&T) technology using multiple objective linear programming(MOLP). The MOLP model involves the simultaneous maximization of three linear objective functions associated with three criteria, which are social, technological, and economic criterion. This model is different from the traditional one which only involves the maximization of economic criterion. It yields a suitable R&D investment ratio to each technology field. Its application to the National R&D Project in l&t Industry is also presented. In this application, the Analytic Hierarchy Process(AHP) is proposed to estimate the weights, which used as the coefficients in each objective function of the MOLP model. Then the problem is solved using the interactive method STEM. It is showed that with the aid of STEM, the MOLP model can be useful decision aid in formulation R&D investment plan in l&t industry. It is expected that the MOLP model works as the basis for planning R&D investment strategy in l&T industry.

  • PDF

Using the Purdue Three-Stage Model to Develop Talent in the Science and Technology

  • Moon, Sidney M.
    • 영재교육연구
    • /
    • 제14권3호
    • /
    • pp.19-40
    • /
    • 2004
  • This paper reports on current work using the Purdue Three-Stage Model to create enrichment classes in science, technology, engineering, and mathematics (the STEM disciplines). First, the history of the Purdue Three-Stage Model and general principles of curriculum and instruction for gifted and talented learners in math/science are reviewed. Then a detailed description of the Model is presented. Following the general description, five specific teacher applications of the Model are presented and compared with respect to the STEM disciplines and developmental levels addressed, and the relative emphasis of each unit on the different stages of the Model. Finally, the advantages of the Model as a framework for curriculum development in science, technology, engineering, and mathematics classes for talented youth are discussed.

Caenorhabditis elegans: A Model System for Anti-Cancer Drug Discovery and Therapeutic Target Identification

  • Kobet, Robert A.;Pan, Xiaoping;Zhang, Baohong;Pak, Stephen C.;Asch, Adam S.;Lee, Myon-Hee
    • Biomolecules & Therapeutics
    • /
    • 제22권5호
    • /
    • pp.371-383
    • /
    • 2014
  • The nematode Caenorhabditis elegans (C. elegans) offers a unique opportunity for biological and basic medical researches due to its genetic tractability and well-defined developmental lineage. It also provides an exceptional model for genetic, molecular, and cellular analysis of human disease-related genes. Recently, C. elegans has been used as an ideal model for the identification and functional analysis of drugs (or small-molecules) in vivo. In this review, we describe conserved oncogenic signaling pathways (Wnt, Notch, and Ras) and their potential roles in the development of cancer stem cells. During C. elegans germline development, these signaling pathways regulate multiple cellular processes such as germline stem cell niche specification, germline stem cell maintenance, and germ cell fate specification. Therefore, the aberrant regulations of these signaling pathways can cause either loss of germline stem cells or overproliferation of a specific cell type, resulting in sterility. This sterility phenotype allows us to identify drugs that can modulate the oncogenic signaling pathways directly or indirectly through a high-throughput screening. Current in vivo or in vitro screening methods are largely focused on the specific core signaling components. However, this phenotype-based screening will identify drugs that possibly target upstream or downstream of core signaling pathways as well as exclude toxic effects. Although phenotype-based drug screening is ideal, the identification of drug targets is a major challenge. We here introduce a new technique, called Drug Affinity Responsive Target Stability (DARTS). This innovative method is able to identify the target of the identified drug. Importantly, signaling pathways and their regulators in C. elegans are highly conserved in most vertebrates, including humans. Therefore, C. elegans will provide a great opportunity to identify therapeutic drugs and their targets, as well as to understand mechanisms underlying the formation of cancer.

인도네시아 유칼립투스 및 아카시아 조림지의 수간곡선식 및 수간재적표 조제 (Taper Equations and Stem Volume Table of Eucalyptus pellita and Acacia mangium Plantations in Indonesia)

  • 손영모;김훈;이호영;김철민;김철상;김재원;주린원;이경학
    • 한국산림과학회지
    • /
    • 제98권6호
    • /
    • pp.633-638
    • /
    • 2009
  • 본 연구는 인도네시아 칼리만탄 지역의 유칼립투스 및 아카시아 조림지에 대해 수간곡선식을 도출하고 수간재적표를 조제하고자 하였다. 유칼립투스와 아카시아 조림지에 적합한 수간곡선식의 도출을 위해서 Max&Burkhart식 등 세 가지 수간곡선 모형을 적용하였으며, 적합도, 편의, 잔차의 표준 편차 등의 통계량을 분석하여 각 모델의 적합성을 평가하였다. 그 결과 유칼립투스와 아카시아의 수간생장을 표현하는 데에는 Kozak식이 가장 적합한 것으로 나타났다. 따라서 Kozak식을 이용하여 유칼립투스와 아카시아의 수간재적표를 조제하였으며, 현지에서 이용되는 지방적 재적표 상의 동일 크기 임목과 비교한 결과 큰 차이가 없는 것으로 나타났다. 본 연구에서 제시된 해외조림지 임목생장에 대한 정보를 토대로 해외조림지에 대한 보다 효율적인 의사결정이 가능하고 체계적인 산림경영이 이루어질 것으로 기대한다

Development of the ice resistance series chart for icebreaking ships

  • Lee, Chun-Ju;Joung, Tae-Hwan;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권6호
    • /
    • pp.794-802
    • /
    • 2018
  • The ice resistance series charts for icebreaking ships were developed through a series of systematic model tests in the ice tank of the Korean Research Institute of Ship and Ocean Engineering (KRISO). Spencer's (1992) component-based scaling system for ship-ice model tests was applied to extend the model ship correlations. Beam to draft ratio (B/T), length to beam ratio (L/B), block coefficient ($C_B$) and stem angle (${\alpha}$) were selected as geometric parameters for hull form development. The basic hull form (S1) of twin pod type with B/T of 3.0, L/B of 6.0, $C_B$ of 0.75 and stem angle of $25^{\circ}$ was generated with a modern hull design concept. A total of 13 hulls were designed varying the geometric parameters; B/T of 2.5 and 3.5, L/B of 5.0 and 7.0, $C_B$ from 0.65 to 0.85 in intervals of 0.05, and 5 stem angles from $15^{\circ}$ to $35^{\circ}$. Ice resistance tests were first carried out with the basic hull form in level ice with suitable speed. Four more tests for $C_B$ variations from 0.65 to 0.85 were conducted and two more for beam to draft and length to beam ratios were also performed to study the effect of the geometric parameters on ice resistance. Ice resistance tests were summarized using the volumetric coefficient, $C_V$ ($={\nabla}/L^3$), instead of L/B and $C_B$ variations. Additional model tests were also carried out to account for the effect of the stem angle, ice thickness and ice strength on ice resistance. In order to develop the ice resistance series charts with a minimum number of experiments, the trends of the ice resistance obtained from the experiments were assumed to be similar for other model ship with different geometric parameters. A total of 18 sheets composed of combinations of three different beam to draft ratios and six block coefficients were developed as a parameter of $C_V$ in the low speed regions. Three correction charts were also developed for stem angles, ice thickness and ice strength respectively. The charts were applied to estimate ice resistance for existing icebreaking ships including ARAON, and the results were satisfactory with reasonable accuracy.