Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0117

Defective Self-Renewal and Differentiation of GBA-Deficient Neural Stem Cells Can Be Restored By Macrophage Colony-Stimulating Factor  

Lee, Hyun (Stem Cell Neuroplasticity Research Group)
Bae, Jae-sung (Stem Cell Neuroplasticity Research Group)
Jin, Hee Kyung (Stem Cell Neuroplasticity Research Group)
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene (GBA), which encodes the lysosomal enzyme glucosylceramidase (GCase). Deficiency in GCase leads to characteristic visceral pathology and lethal neurological manifestations in some patients. Investigations into neurogenesis have suggested that neurodegenerative disorders, such as GD, could be overcome or at least ameliorated by the generation of new neurons. Bone marrowderived mesenchymal stem cells (BM-MSCs) are potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. Our objective was to examine the mechanism of neurogenesis by BM-MSCs in GD. We found that neural stem cells (NSCs) derived from a neuronopathic GD model exhibited decreased ability for self-renewal and neuronal differentiation. Co-culture of GBA-deficient NSCs with BM-MSCs resulted in an enhanced capacity for self-renewal, and an increased ability for differentiation into neurons or oligodendrocytes. Enhanced proliferation and neuronal differentiation of GBA-deficient NSCs was associated with elevated release of macrophage colony-stimulating factor (M-CSF) from BM-MSCs. Our findings suggest that soluble M-CSF derived from BM-MSCs can modulate GBA-deficient NSCs, resulting in their improved proliferation and neuronal differentiation.
Keywords
BM-MSC; gaucher disease; M-CSF; neural stem cells; neurogenesis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Adachi, M., Wallace, B.J., Schneck, L., and Volk, B.W. (1967). Fine structure of central nervous system in early infantile Gaucher's disease. Arch. Pathol. 83, 513-526.
2 Bae, J.S., Han, H.S., Youn, D.H., Carter, J.E., Modo. M., Schuchman, E.H., and Jin, H.K. (2007). Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 25, 1307-1316.   DOI   ScienceOn
3 Bajetto, A., Bonavia, R., Barbero, S., Florio, T., and Schettini, G. (2001). Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 22, 147-184.   DOI   ScienceOn
4 Beutler, E., and Grabowski, G.A. (2001). Glucosylceramide lipidosis-Gaucher disease. In: C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, eds. The metabolic and molecular bases of inherited diseases. 8th ed. (New York, USA: McGraw-Hill), pp. 3635-3668.
5 Block, G.J., Ohkouchi, S., Fung, F., Frenkel, J., Gregory, C., Pochampally, R., DiMattia, G., Sullivan, D.E., and Prockop, D.J. (2009). Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem Cells 27, 670-681.   DOI   ScienceOn
6 Brady, R.O., Kanfer, J.N., Bradley, R.M., and Shapiro, D. (1966). Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher's disease. J. Clin. Invest. 45, 1112-1115.   DOI   ScienceOn
7 Chen, Y., Balasubramaniyan, V., Peng, J., Hurlock, E.C., Tallquist, M., Li, J., and Lu, Q.R. (2007). Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat. Protoc. 2, 1044-1051.   DOI   ScienceOn
8 Conradi, N.G., Sourander, P., Nilsson, O., Svennerholm, L., and Erikson, A. (1984). Neuropathology of the Norrbottnian type of Gaucher disease. Morphological and biochemical studies. Acta Neuropathol. 65, 99-109.   DOI
9 Conradi, N.G., Kalimo, H., and Sourander, P. (1988). Reactions of vessel walls and brain parenchyma to the accumulation of Gaucher cells in the Norrbottnian type (type III) of Gaucher disease. Acta Neuropathol. 75, 385-390.   DOI
10 Croft, A.P., and Przyborski, S.A. (2009). Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells. Exp. Neurol. 216, 329-341.   DOI   ScienceOn
11 Deng, Y.B., Liu, X.G., Liu, Z.G., Liu, X.L., Liu, Y., and Zhou, G.Q. (2006). Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery: evidence from a study in rhesus monkeys. Cytotherapy 8, 210-214.   DOI   ScienceOn
12 He, X., Dagan, A., Gatt, S., and Schuchman, E.H. (2005). Simultaneous quantitative analysis of ceramide and sphingosine in mouse blood by naphthalene-2,3-dicarboxyaldehyde derivatization after hydrolysis with ceramidase. Anal. Biochem. 340, 113-122.   DOI   ScienceOn
13 Enquist, I.B., Lo Bianco, C., Ooka, A., Nilsson, E., Mansson, J.E., Ehinger, M., Richter, J., Brady, R.O., Kirik, D., Karlsson, S. (2007). Murine models of acute neuronopathic Gaucher disease. Proc. Natl. Acad. Sci. USA 104, 17483-17488.   DOI   ScienceOn
14 Farfel-Becker, T., Vitner, E., Dekel, H., Leshem, N., Enquist, I.B., Karlsson, S., and Futerman, A.H. (2009). No evidence for activation of the unfolded protein response in neuronopathic models of Gaucher disease. Hum. Mol. Genet. 18, 1482-1488.   DOI   ScienceOn
15 Farfel-Becker, T., Vitner, E.B., Pressey, S.N., Eilam, R., Cooper, J.D., Futerman, A.H. (2011). Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum. Mol..Genet. 20, 1375-1386.   DOI   ScienceOn
16 He, X., Huang, Y., Li, B., Gong, C.X., and Schuchman, E.H. (2010). Deregulation of sphingolipid metabolism in Alzheimer's disease. Neurobiol. Aging 31, 398-408.   DOI   ScienceOn
17 Kaga, M., Azuma, C., Imamura, T., Murakami, T., and Kaga, K. (1982). Auditory brainstem response (ABR) in infantile Gaucher's disease. Neuropediatrics 13, 207-210.   DOI
18 Kaga, K., Ono, M., Yakumaru, K., Owada, M., and Mizutani, T. (1998). Brainstem pathology of infantile Gaucher's disease with only wave I and II of auditory brainstem response. J. Laryngol. Otol. 112, 1069-1073.
19 Ming, G.L., and Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687-702.   DOI   ScienceOn
20 Lee, H., Kang, J.E., Lee, J.K., Bae, J.S., and Jin, H.K. (2013). Bone-marrow-derived mesenchymal stem cells promote proliferation and neuronal differentiation of Niemann-Pick type C mouse neural stem cells by upregulation and secretion of CCL2. Hum. Gene. Ther. 24, 655-669.   DOI   ScienceOn
21 Motabar, O., Goldin, E., Leister, W., Liu, K., Southall, N., Huang, W., Marugan, J.J., Sidransky, E., and Zheng, W. (2012). A high throughput glucocerebrosidase assay using the natural substrate glucosylceramide. Anal. Bioanal. Chem. 402, 731-739.   DOI   ScienceOn
22 Nandi, S., Gokhan, S., Dai, X.M., Wei, S., Enikolopov, G., Lin, H., Mehler, M.F., and Stanley, E.R. (2012). The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev. Biol. 367, 100-113.   DOI   ScienceOn
23 Parr, A.M., Tator, C.H., and Keating, A. (2007). Bone marrow derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant. 40, 609-619.   DOI   ScienceOn
24 Prockop, D.J. (2007). "Stemness" does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin. Pharmacol. Ther. 82, 241-243.   DOI   ScienceOn
25 Prockop, D.J., Gregory, C.A., and Spees, J.L. (2003). One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc. Natl. Acad. Sci. USA 100, 11917-11923.   DOI   ScienceOn
26 Ren, G., Li, T., Lan, J.Q., Wilz, A., Simon, R.P., and Boison, D. (2007). Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: a novel perspective for seizure control. Exp. Neurol. 208, 26-37.   DOI   ScienceOn
27 Tylki-Szymanska, A., Vellodi, A., El-Beshlawy, A., Cole, J.A., and Kolodny, E. (2010). Neuronopathic Gaucher disease: demographic and clinical features of 131 patients enrolled in the International Collaborative Gaucher Group Neurological Outcomes Subregistry. J. Inherit. Metab. Dis. 33, 339-346.   DOI
28 Reynolds, B.A., and Weiss, S. (1996). Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1-13.   DOI   ScienceOn
29 Sidransky, E. (2004). Gaucher disease: complexity in a 'simple' disorder. Mol. Genet. Metab. 83, 6-15.   DOI   ScienceOn
30 Tayebi, N., Reissner, K.J., Lau, E.K., Stubblefield, B.K., Klineburgess, A.C., Martin, B.M., and Sidransky, E. (1998). Genotypic heterogeneity and phenotypic variation among patients with type 2 Gaucher's disease. Pediatr. Res. 43, 571-578.   DOI   ScienceOn
31 Yoo, S.W., Kim, S.S., Lee, S.Y., Lee, H.S., Kim, H.S., Lee, Y.D., Suh-Kim, H. (2008). Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp. Mol. Med. 40, 387-397.   DOI   ScienceOn
32 Zhang, J., Li, Y., Chen, J., Yang, M., Katakowski, M., Lu, M., and Chopp, M. (2004). Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res. 1030, 19-27.   DOI   ScienceOn
33 Zhang, J., Li, Y., Chen, J., Cui, Y., Lu, M., Elias, S.B., Mitchell, J.B., Hammill, L., Vanguri, P., and Chopp, M. (2005). Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp. Neurol. 195, 16-26.   DOI   ScienceOn