• Title/Summary/Keyword: stem model

Search Result 585, Processing Time 0.023 seconds

Improvement of Motor Behavior of Parkinson's Disease Animal Model by Nurr1 Transfected Human Embryonic Stem Cells

  • Lee, Chang-Hyun;Cho, Hwang-Yun;Kim, Yong-Sik;Kim, Eun-Young;Lee, Won-Don;Park, Sepill;Lim, Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.274-274
    • /
    • 2004
  • The purpose of this study is to evaluate the efficacy of in vitro differentiated human embryonic stem (MB03) cells expressing Nurr1 in relief of symptomatic motor behavior of Parkinson's disease (PD) animal models. MB03 cell was genetically modified to express Nurr1 protein (Nr#24/MB03) and was induced to differentiate according to 2- /4+ protocol using retinoic acid and ascorbic acid. (omitted)

  • PDF

Stem Cell Biotechnology for Cell Therapy

  • LEE Dong-Ree;KIM Ha Won
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.199-206
    • /
    • 2005
  • Cell therapy (CT) is a group of techniques to treat human disorders by transplantation of cells which have been processed and propagated independent of the living body. Blood transfusion and bone marrow transplant have been the primary examples of cell therapy. With introduction of stem cell (SC) technologies, however, CT is perceived as the next generation of biologies to treat human diseases such as cancer, neurological diseases, and heart disease. Despite potential of cell therapy, insufficient guidelines have been implemented concerning safety test and regulation of cell therapy. This review addresses the safety issues to be resolved for the cell therapy, especially SC therapy, to be successfully utilized for clinical practice. Adequate donor cell screening must preceed to ensure safety in cell therapy. In terms of SC culture, controlled, standardized practices and procedures should be established. Further molecular studies should be done on SC development and differentiation to enhance safety level in cell therapy. Finally, animal model must be further installed to evaluate toxicity, new concepts, and proliferative potential of SC including alternative feeder layer of animal cells.

Application of the STEM II to air pollutant transport/chemistry/ deposition in the Korea and Eastern China Area (STEM II를 이용한 한국과 중국동부 지역의 대기오염물질 이동/화학/침착 모사에 관한 연구)

  • 이상인;조석연;심상규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.163-170
    • /
    • 1995
  • The STEM II(Sulfur Transport Eulerian Model II) was adapted to investigate air pollutant transport phenomena between Eastern China and Korea. The movement of the high concentration region was clearly identified for the sulfate but was mot visible for SO$_{2}$. The 10.sim. 16 times more amount of SO$_{2}$ is transported to Korea compared to that of the local emission while the amount of the sulfate transported to Korea is 1 .sim. 1.3 times more than that of the sulfate produced by photo-chemical reaction in Korea. APTIs(Air Pollutant Transport Indices) for SO$_{2}$ and sulfate are approximately 0.85, which implies that the most of the SO$_{2}$ and sulfate existed in Korea are transported from Eastern China.

  • PDF

Antioxidant Activities of Different Parts of Synurus deltoids Nakai Extracts in Vitro

  • Jung, Mee-Jung;Heo, Seong-Il;Wang, Myeong-Hyeon
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1156-1159
    • /
    • 2008
  • The antioxidant activity of hot water extracts of various parts, the leaf, stem, and root of Synurus deltoides was evaluated by various antioxidant assays, including total phenolic content, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, hydroxyl radical (${\cdot}OH$) scavenging, superoxide dismutase (SOD), and xanthine oxidase (XOI) activities. The various antioxidant activities were compared with the standard antioxidants such as L-ascorbic acid, $\alpha$-tocopherol, and butylated hydroxyanisole (BHA). Among the different plant parts, stem has been found to possess the highest activity in all tested model systems, the activity decreased in the order stems>roots>leaves. These results indicate that stem extract could be used as potential source of natural antioxidant.

Optimization of Human Embryonic Stem Cells into Differentiation of Dopaminergic Neurons in Vitro: II. Genetically Modified Human Embryonic Stem Cells Treated with RA/AA or b-FGF

  • 신현아;김은영;이영재;이금실;조황윤;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.75-75
    • /
    • 2003
  • Since the establishment of embryonic stem cell, pluripotency of the cells was known to allow differentiation of the cells into various cell types consisting whole body. Several protocols have been developed to induce expression of specific genes.. However, no precise protocol that will generate a single type of the cells from stem cells has been reported. In order to produce cells suitable for transplantion into brain of PD animal model, which arouse due to a progressive degeneration of dopaminergic neurons in midbrain, human embryonic stem cell (hESC, MB03) was transfected with cDNAs cording for tyrosine hydroxylase (TH). Successful transfection was confirmed by western immunoblotting. Newly transfected cell line (TH#2/MB03) was induced to differentiate by the two neurogenic factors retinoic acid (RA) and b-FGF. Exp. I) Upon differentiation using RA/ascorbic acid (AA), embryoid bodies (EB, for 4days) derived from hES cells were exposed to RA (10$^{-6}$ M)/AA (50 mM) for 4 days, and were allowed to differentiate in N2 medium for 7, 14, 21, or 28 days. Exp. II) When bFGF was used, neuronal precursor cells were selected for 8 days in N2 medium after EB formation. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days followed by a final differentiation in N2 medium for 7, 14, 21 or 28 days. By indirect immunocytochemical studies, proportion of cells expressing NF200 increased rapidly from 20% at 7 days to 70 % at 28 days in RA/AA-treated group, while those cells expressing NF160 decreased from 80% at 7 days to 10% at 28 days upon differentiation in N2 medium. However, in differentiation by RA/AA treatment system, there was a significant increase in proportion of neuron maturity (73%) at day 14 after N2 medium. TH#2/MB03 cells expressing TH are >90% when matured at the absence of either bDNF or TGF-$\alpha$. These results suggested that TH#2/MB03 cells could be differentiated in vitro into mature neurons by RA/AA.

  • PDF

The Effects of Human Adipose Tissue-derived Stem Cells on Degenerative Change of Knee in Rabbit Model (가토 모델에서 인체지방유래 줄기세포가 슬관절의 퇴행성 변화에 미치는 영향)

  • Jeong, Ki-Hwan;Kim, Seok-Kwun;Jeong, Jae-Oo;Heo, Jeong;Kwon, Yong-Seok;Lee, Keun-Cheol
    • Archives of Plastic Surgery
    • /
    • v.35 no.6
    • /
    • pp.637-644
    • /
    • 2008
  • Purpose: The survival of bone marrow derived stem cell was reported several times. But the survival of adipose tissue derived stem cells(hASCs) was not mentioned on. We studied the adipose tissue derived stem cell's survival and effect on articular cartilage in rabbits. Methods: Osteoarthritis was induced in twenty New Zealand white rabbits by intraarticular injection of monosodium iodoacetate(MIA). After four weeks, hASCs were also injected into the knee joints space without any vehicle, but the control group received phosphate buffered saline only. The histologic grade of articular cartilage was measured in 4 and 8 weeks after the transplantation of hASC and the viability of injected stem cells measured by Fluorescent in situ Hybridization (FISH) examination. Results: After 4 and 8 weeks from hASCs transplantation, histologic grade was not significantly difference between two groups(p>0.05), and the Y chromosome of the transplanted hASCs was not detected in articular cartilage. Conclusion: We found that direct injection of hASC in joint space didn't work on damaged articular cartilage repair.

Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells

  • Kim, You-Sun;Kokturk, Nurdan;Kim, Ji-Young;Lee, Sei Won;Lim, Jaeyun;Choi, Soo Jin;Oh, Wonil;Oh, Yeon-Mok
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.728-733
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.

Is There Additive Therapeutic Effect When GCSF Combined with Adipose-Derived Stem Cell in a Rat Model of Acute Spinal Cord Injury?

  • Min, Joongkee;Kim, Jeong Hoon;Choi, Kyoung Hyo;Yoon, Hyung Ho;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.4
    • /
    • pp.404-416
    • /
    • 2017
  • Objective : Functional and neural tissue recovery has been reported in many animal studies conducted with stem cells. However, the combined effect of cytokines and stem cells has not yet been adequately researched. Here, we analyzed the additive effects of granulocyte colony-stimulating factor (GCSF) on adipose-derived stem cells (ADSCs) infusion in the treatment of acute spinal cord injury (SCI) in rats. Methods : Four days after intrathecal infusion tubes implantation in Sprague-Dawley rats, SCI was induced with an infinite horizon impactor. In the Sham group (n=5), phosphate-buffered saline was injected 3, 7, and 14 days after SCI. GCSF, ADSCs, and ADSCs with GCSF were injected at the same time in the GCSF (n=8), ADSC (n=8), and ADSC+GCSF groups (n=7), respectively. Results : The ADSC and ADSC+GCSF groups, but not the GCSF group, showed significantly higher Basso-Beattie-Bresnahan scores than the Sham group during 8 weeks (p<0.01), but no significant difference between the ADSC and ADSC+GCSF groups. In the ladder rung test, all four groups were significantly different from each other, with the ADSC+GCSF group showing the best improvement (p<0.01). On immunofluorescent staining (GAP43, MAP2), western blotting (GAP43), and reverse transcription polymerase chain reaction (GAP43, nerve growth factor), the ADSC and ADSC+GCSF groups showed higher levels than the Sham and GCSF groups. Conclusion : Our analyses suggest that the combination of GCSF and ADSCs infusions in acute SCI in the rat does not have a significant additive effect. Hence, when combination agents for SCI stem cell therapy are considered, molecules other than GCSF, or modifications to the methodology, should be investigated.

The Effects of the 3-OH Group of Kaempferol on Interfollicular Epidermal Stem Cell Fate

  • Chae, Je Byeong;Choi, Hye-Ryung;Shin, Jung-Won;Na, Jung-Im;Huh, Chang-Hun;Park, Kyoung-Chan
    • Annals of dermatology
    • /
    • v.30 no.6
    • /
    • pp.694-700
    • /
    • 2018
  • Background: Kaempferol (3,4',5,7-tetrahydroxyflavone) is a flavonoid known to have a wide range of pharmacological activities. The 3-OH group in flavonoids has been reported to determine antioxidant activities. Objective: We tested whether kaempferol can affect the expression of integrins and the stem cell fate of interfollicular epidermal stem cells. Methods: Skin equivalent (SE) models were constructed, and the expression levels of stem cell markers and basement membrane-related antigens were tested. The immunohistochemical staining patterns of integrins, p63, and proliferating cell nuclear antigen (PCNA) were compared between kaempferol- and apigenin-treated SE models. Reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expression of integrins. Results: Kaempferol increased the thickness of the epidermis when added to prepare SEs. In addition, the basal cells of kaempferol-treated SEs appeared more columnar. In the immunohistological study, the expression of integrins ${\alpha}6$ and ${\beta}1$ and the numbers of p63- and PCNA-positive cells were markedly higher in the kaempferol-treated model. However, apigenin showed no effects on the formation of three-dimensional skin models. RT-PCR analysis also confirmed that kaempferol increased the expression of integrin ${\alpha}6$ and integrin ${\beta}1$. Conclusion: Our findings indicated that kaempferol can increase the proliferative potential of basal epidermal cells by modulating the basement membrane. In other words, kaempferol can affect the fate of interfollicular epidermal stem cells by increasing the expression of both integrins ${\alpha}6$ and ${\beta}1$. These effects, in particular, might be ascribed to the 3-OH group of kaempferol.

Differentiation and Characterization of Cystic Fibrosis Transmembrane Conductance Regulator Knockout Human Pluripotent Stem Cells into Salivary Gland Epithelial Progenitors

  • Shuang Yan;Yifei Zhang;Siqi Zhang;Shicheng Wei
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.394-405
    • /
    • 2023
  • The differentiation of pluripotent stem cells has been used to study disease mechanisms and development. We previously described a method for differentiating human pluripotent stem cells (hPSCs) into salivary gland epithelial progenitors (SGEPs). Here, cystic fibrosis transmembrane conductance regulator (CFTR) knockout hPSCs were differentiated into SGEPs derived from CFTR knockout hESCs (CF-SGEPs) using the same protocol to investigate whether the hPSC-derived SGEPs can model the characteristics of CF. CF-a disease that affects salivary gland (SG) function-is caused by mutations of the CFTR gene. Firstly, we successfully generated CFTR knockout hPSCs with reduced CFTR protein expression using the CRISPR-Cas9 system. After 16 days of differentiation, the protein expression of CFTR decreased in SGEPs derived from CFTR knockout hESCs (CF-SGEPs). RNA-Seq revealed that multiple genes modulating SG development and function were down-regulated, and positive regulators of inflammation were up-regulated in CF-SGEPs, correlating with the salivary phenotype of CF patients. These results demonstrated that CFTR suppression disrupted the differentiation of hPSC-derived SGEPs, which modeled the SG development of CF patients. In summary, this study not only proved that the hPSC-derived SGEPs could serve as manipulable and readily accessible cell models for the study of SG developmental diseases but also opened up new avenues for the study of the CF mechanism.