• Title/Summary/Keyword: stem model

검색결과 585건 처리시간 0.025초

과학 학습 동기가 높은 학생이 과학 학업 성취도가 높아지는가, 또는 그 역인가? -양자가 지닌 교차지연 효과 및 이공계 진로 동기에 미치는 효과- (Does Science Motivation Lead to Higher Achievement, or Vice Versa?: Their Cross-Lagged Effects and Effects on STEM Career Motivation)

  • 이경건;문선영;한문정;홍훈기
    • 한국과학교육학회지
    • /
    • 제42권3호
    • /
    • pp.371-381
    • /
    • 2022
  • 본 연구에서는 고등학교 맥락에서 과학 학습 동기가 높은 학생이 과학 학업 성취도가 오르게 되는지 또는 역으로 과학 학업 성취도가 높은 학생이 과학 학습 동기가 오르게 되는지의 인과 관계를 살펴보고, 이러한 두 요인들이 학생의 이공계 진로 동기에 미치는 영향을 살펴보았다. 2021년 2학기에 서울시 소재 1개 일반계고등학교 1학년 학생을 대상으로 동일 시간 간격으로 3회의 과학 학습 동기 검사를 실시하였고, 마지막 검사 시기에 이공계 진로 동기 검사 역시 실시하였다. 총 171명의 학생 중간고사 및 기말고사 성적을 포함한 자기회귀 교차지연(autoregressive cross-lagged) 모형을 구성하고 적합하였다. 연구 모형은 높은 측정안정성과 적합도를 지닌 것으로 나타났다. 자기회귀 경로와 교차지연 경로는 모두 통계적으로 유의미하였다. 다만 표준화 회귀 계수의 크기는 과학 학습 동기에서 학업 성취도로 향하는 경로가 그 역의 경로보다 큰 편이었다. 이공계 진로 동기로 향하는 경로 중 기말고사 성적은 유의미한 직접 효과를 나타내지 않았으며, 3차 과학 학습 동기 점수만이 유의미한 직접 효과를 나타내었다. 간접효과의 경우 학기 초의 1차 과학 학습 동기가 기말고사 성적 및 이공계 진로 동기에 이르기까지 유의미한 영향을 미쳤으며, 기말고사 성적은 3차 과학 학습 동기 점수를 매개로 이공계 진로 동기에 유의미한 영향을 미쳤다. 그러나 기말고사 성적은 이공계 진로 동기에 유의미한 총 효과를 지니지 않았다. 본 연구의 결과는 과학 학습 동기와 과학 학업 성취도 간의 상호적이면서도 순환적인 인과관계와 함께, 그 가운데 과학 학습 동기가 높은 학생이 과학 성취도가 오르게 되는 효과가 그 역보다 크다는 점을 보여준다. 연구 결과로써 고등학교에서 과학 학습 동기의 중요성을 재확인하였다. 고등학교에서 학기 초, 중, 후반에 과학 학습 동기를 증진시키기 위한 교수적 함의를 논의하였으며, 후속 연구로서 고등학생의 과학 학습 동기와 학업 성취도가 향후 이공계 직업 생활에 미치는 영향에 대한 종단 연구를 제안하였다.

두 개의 다른 마우스 배아줄기세포의 차별적인 조혈세포 분화능 (Different Potential of Hematopoietic Differentiation in Two Distinct Mouse Embryonic Stem Cells)

  • 김진숙;강호범;송지연;오구택;남기환;이영희
    • 한국발생생물학회지:발생과생식
    • /
    • 제9권2호
    • /
    • pp.105-114
    • /
    • 2005
  • 배아 줄기세포는 세포 치료 목적을 위한 재료로써 매우 큰 잠재력을 가지고 있으며, 이러한 잠재력의 실현을 위해서 세포의 운명에 결정적인 역할을 하는 요소들을 확인하고 특정 세포의 대량 생산을 위한 방법을 개발하여야 한다. 조혈과정은 폭넓게 연구되어 왔으며, 배아 줄기세포로부터 조혈세포의 분화는 lineage commitment에 관한 연구에 좋은 모델이 된다. 본 연구에서는, 두 종류의 마우스 배아 줄기세포주 TC-1과 B6-1를 이용하여 그 특성과 조혈세포 분화능을 비교하여 보았다. 두 세포주는 작은 차이는 있으나 줄기세포로서의 특성을 공통적으로 가지고 있었다. 그러나 methylcellulose 배양 system을 사용하여 embryonic body 형성능을 확인한 결과 TC-1이 B6-1에 비해 월등함을 확인하였다. 조혈세포 분화의 추적을 위해 blast colony의 형성, progenitor assay, RT-PCR을 통한 조혈세포 분화 관련 marker의 발현 분석을 수행한 결과, TC-1은 정상적으로 조혈세포를 생성해 내지만, B6-1은 제대로 분화되지 못함을 확인할 수 있었다. 이러한 결과들은 in vitro에서 배아 줄기세포로부터 조혈세포로 분화를 유도할 때, 보다 적합한 세포주의 탐색이 요구됨을 제시하며 이는 향후 인간 배아 줄기세포주에서도 마찬가지로 적용될 수 있음을 암시한다고 사료된다.

  • PDF

The Inhibition of MicroRNA-139-5p Promoted Osteoporosis of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Wnt/Beta-Catenin Signaling Pathway by NOTCH1

  • Feng, Yimiao;Wan, Pengbo;Yin, Linling;Lou, Xintian
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권3호
    • /
    • pp.448-458
    • /
    • 2020
  • We investigated the therapeutic effects of microRNA-139-5p in relation to osteoporosis of bone marrow-derived mesenchymal stem cell (BMSCs) and its underlying mechanisms. In this study we used a dexamethasone-induced in vivo model of osteoporosis and BMSCs were used for the in vitro model. Real-time quantitative polymerase chain reaction (RT-PCR) and gene chip were used to analyze the expression of microRNA-139-5p. In an osteoporosis rat model, the expression of microRNA-139-5p was increased, compared with normal group. Down-regulation of microRNA-139-5p promotes cell proliferation and osteogenic differentiation in BMSCs. Especially, up-regulation of microRNA-139-5p reduced cell proliferation and osteogenic differentiation in BMSCs. Overexpression of miR-139-5p induced Wnt/β-catenin and down-regulated NOTCH1 signaling in BMSCs. Down-regulation of miR-139-5p suppressed Wnt/β-catenin and induced NOTCH1 signaling in BMSCs. The inhibition of NOTCH1 reduced the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Activation of Wnt/β-catenin also inhibited the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Taken together, our results suggested that the inhibition of microRNA-139-5p promotes osteogenic differentiation of BMSCs via targeting Wnt/β-catenin signaling pathway by NOTCH1.

Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model

  • Park, Un-Chul;Cho, Myung-Soo;Park, Jung-Hyun;Kim, Sang-Jin;Ku, Seung-Yup;Choi, Young-Min;Moon, Shin-Yong;Yu, Hyeong-Gon
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제38권4호
    • /
    • pp.216-221
    • /
    • 2011
  • Objective: To differentiate the human embryonic stem cells (hESCs) into the retinal pigment epithelium (RPE) in the defined culture condition and determine its therapeutic potential for the treatment of retinal degenerative diseases. Methods: The embryoid bodies were formed from hESCs and attached on the matrigel coated culture dishes. The neural structures consisting neural precursors were selected and expanded to form rosette structures. The mechanically isolated neural rosettes were differentiated into pigmented cells in the media comprised of N2 and B27. Expression profiles of markers related to RPE development were analyzed by reverse transcription-polymerase chain reaction and immunostaining. Dissociated putative RPE cells ($10^5$ cells/5 ${\mu}L$) were transplanted into the subretinal space of rat retinal degeneration model induced by intravenous sodium iodate injection. Animals were sacrificed at 1, 2, and 4 weeks after transplantation, and immnohistochemistry study was performed to verify the survival of the transplanted cells. Results: The putative RPE cells derived from hESC showed characteristics of the human RPE cells morphologically and expressed molecular markers and associated with RPE fate. Grafted RPE cells were found to survive in the subretinal space up to 4 weeks after transplantation, and the expression of RPE markers was confirmed with immunohistochemistry. Conclusion: Transplanted RPE cells derived from hESC in the defined culture condition successfully survived and migrated within subretinal space of rat retinal degeneration model. These results support the feasibility of the hESC derived RPE cells for cell-based therapies for retinal degenerative disease.

Dendritic Cell (DC) Vaccine in Mouse Lung Cancer Minimal Residual Model: Comparison of Monocyte-derived DC vs. Hematopoietic Stem Cell Derived-DC

  • Baek, Soyoung;Lee, Seog Jae;Kim, Myoung Joo;Lee, Hyunah
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.269-276
    • /
    • 2012
  • The anti-tumor effect of monocyte-derived DC (MoDC) vaccine was studied in lung cancer model with feasible but weak Ag-specific immune response and incomplete blocking of tumor growth. To overcome this limitation, the hematopoietic stem cell-derived DC (SDC) was cultured and the anti-tumor effect of MoDC & SDC was compared in mouse lung cancer minimal residual model (MRD). Therapeutic DCs were cultured from either $CD34^+$ hematopoietic stem cells with GM-CSF, SCF and IL-4 for 14 days (SDC) or monocytes with GM-CSF and IL-4 for 7 days (MoDC). DCs were injected twice by one week interval into the peritoneum of mice that are inoculated with Lewis Lung Carcinoma cells (LLC) one day before the DC injection. Anti-tumor responses and the immune modulation were observed 3 weeks after the final DC injection. CD11c expression, IL-12 and TGF-${\beta}$ secretion were higher in SDC but CCR7 expression, IFN-${\gamma}$ and IL-10 secretion were higher in MoDC. The proportion of $CD11c^+CD8a^+$ cells was similar in both DC cultures. Although both DC reduced the tumor burden, histological anti-tumor effect and the frequencies of IFN-${\gamma}$ secreting $CD8^+$ T cells were higher in SDC treated group than in MoDC. Conclusively, although both MoDC and SDC can induce the anti-tumor immunity, SDC may be better module as anti-tumor vaccine than MoDC in mouse lung cancer.

이공계 대학생의 사회적 책임감 함양을 위한 ENACT 모형의 개발과 교육적 함의 (Development of the ENACT Model for Cultivating Social Responsibility of College Students in STEM Fields)

  • 이현주;최유현;남창훈;옥승용;심성옥;황요한;김가형
    • 공학교육연구
    • /
    • 제23권6호
    • /
    • pp.3-16
    • /
    • 2020
  • This study aims to introduce the ENACT model, which is a systematic teaching-learning model for cultivating social responsibility of science and engineering college students, and to discuss its educational implications. For the development of the ENACT model, we conducted extensive literature reviews on RRI, STEM education, and science and technology studies (STS). In addition, we examined exemplary overseas education programs emphasizing social responsibility of scientists/engineers and citizens. The ENACT model consists of five steps; 1) Engage in SSIs, 2) Navigate SSIs, 3) Anticipate consequences, 4) Conduct scientific and engineering practice, and 5) Take action. This model links Socioscientific Issues (SSI) education with engineering education, dividing the major elements of social responsibility education for scientists and engineers into the dimensions of epistemology and praxis, and reflected them in the model. This effort enables science and engineering college students to pursue more responsible and sustainable development by carrying out the responsible problem-solving process based on an understanding of the nature of science and technology. We plan to implement ENACT model based programs for science and engineering college students and to examine the effects.

Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model

  • Shin, Phil-Kyung;Zoh, Yoonchae;Choi, Jina;Kim, Myung-Sunny;Kim, Yuri;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • 제13권1호
    • /
    • pp.58-63
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Telomeres are located at the chromosomal ends and progressively shortened during each cell cycle. Telomerase, which is regulated by hTERT and c-MYC, maintains telomeric DNA sequences. Especially, telomerase is active in cancer and stem cells to maintain telomere length for replicative immortality. Recently we reported that walnut phenolic extract (WPE) can reduce cell viability in a colon cancer stem cell (CSC) model. We, therefore, investigated the effect of WPE on telomere maintenance in the same model. MATERIALS AND METHODS: $CD133^+CD44^+$ cells from HCT116, a human colon cancer cell line, were sorted by Fluorescence-activated cell sorting (FACS) and treated with WPE at the concentrations of 0, 10, 20, and $40{\mu}g/mL$ for 6 days. Telomere lengths were assessed by quantitative real-time PCR (qRT-PCR) using telomere specific primers and DNA extracted from the cells, which was further adjusted with single-copy gene and reference DNA ($ddC_t$). Telomerase activity was also measured by qRT-PCR after incubating the PCR mixture with cell protein extracts, which was adjusted with reference DNA ($dC_t$). Transcriptions of hTERT and c-MYC were determined using conventional RT-PCR. RESULTS: Telomere length of WPE-treated cells was significantly decreased in a dose-dependent manner ($5.16{\pm}0.13$ at $0{\mu}g/mL$, $4.79{\pm}0.12$ at $10{\mu}g/mL$, $3.24{\pm}0.08$ at $20{\mu}g/mL$ and $3.99{\pm}0.09$ at $40{\mu}g/mL$; P = 0.0276). Telomerase activities concurrently decreased with telomere length ($1.47{\pm}0.04$, $1.09{\pm}0.01$, $0.76{\pm}0.08$, and $0.88{\pm}0.06$; P = 0.0067). There was a positive correlation between telomere length and telomerase activity (r = 0.9090; P < 0.0001). Transcriptions of both hTERT and c-MYC were also significantly decreased in the same manner. CONCLUSION: In the present cell culture model, WPE reduced telomere maintenance, which may provide a mechanistic link to the effect of walnuts on the viability of colon CSCs.

Enhancement of Transgene Expression by HDAC Inhibitors in Mouse Embryonic Stem Cells

  • Kim, Young-Eun;Park, Jeong-A;Park, Sang-Kyu;Kang, Ho-Bum;Kwon, Hyung-Joo;Lee, Younghee
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권4호
    • /
    • pp.379-387
    • /
    • 2013
  • Embryonic stem (ES) cells can self-renew and differentiate to various cells depending on the culture condition. Although ES cells are a good model for cell type specification and can be useful for application in clinics in the future, studies on ES cells have many experimental restraints including low transfection efficiency and transgene expression. Here, we observed that transgene expression after transfection was enhanced by treatment with histone deacetylse (HDAC) inhibitors such as trichostatin A, sodium butyrate, and valproic acid. Transfection was performed using conventional transfection reagents with a retroviral vector encoding GFP under the control of CMV promoter as a reporter. Treatment of ES cells with HDAC inhibitors after transfection increased population of GFP positive cells up to 180% compared with untreated control. ES cells showed normal expression of stem cell markers after treatment with HDAC inhibitors. Transgene expression was further enhanced by modifying transfection procedure. GFP positive cells selected after transfection were proved to have the stem cell properties. Our improved protocol for enhanced gene delivery and expression in mouse ES cells without hampering ES cell properties will be useful for study and application of ES cells.

Kaposi's Sarcoma-Associated Herpesvirus Infection Modulates the Proliferation of Glioma Stem-Like Cells

  • Jeon, Hyungtaek;Kang, Yun Hee;Yoo, Seung-Min;Park, Myung-Jin;Park, Jong Bae;Lee, Seung-Hoon;Lee, Myung-Shin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.165-174
    • /
    • 2018
  • Glioblastoma multiforme is the most lethal malignant brain tumor. Despite many intensive studies, the prognosis of glioblastoma multiforme is currently very poor, with a median overall survival duration of 14 months and 2-year survival rates of less than 10%. Although viral infections have been emphasized as potential cofactors, their influences on pathways that support glioblastoma progression are not known. Some previous studies indicated that human Kaposi's sarcoma-associated herpesvirus (KSHV) was detected in healthy brains, and its microRNA was also detected in glioblastoma patients' plasma. However, a direct link between KSHV infection and glioblastoma is currently not known. In this study, we infected glioblastoma cells and glioma stem-like cells (GSCs) with KSHV to establish an in vitro cell model for KSHV-infected glioblastoma cells and glioma stem-like cells in order to identify virologic outcomes that overlap with markers of aggressive disease. Latently KSHV-infected glioblastoma cells and GSCs were successfully established. Additionally, using these cell models, we found that KSHV infection modulates the proliferation of glioma stem-like cells.

Expression Analyses Revealed Thymic Stromal Co-Transporter/Slc46A2 Is in Stem Cell Populations and Is a Putative Tumor Suppressor

  • Kim, Ki Yeon;Lee, Gwanghee;Yoon, Minsang;Cho, Eun Hye;Park, Chan-Sik;Kim, Moon Gyo
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.548-561
    • /
    • 2015
  • By combining conventional single cell analysis with flow cytometry and public database searches with bioinformatics tools, we extended the expression profiling of thymic stromal cotransporter (TSCOT), Slc46A2/Ly110, that was shown to be expressed in bipotent precursor and cortical thymic epithelial cells. Genome scale analysis verified TSCOT expression in thymic tissue- and cell type- specific fashion and is also expressed in some other epithelial tissues including skin and lung. Coexpression profiling with genes, Foxn1 and Hoxa3, revealed the role of TSCOT during the organogenesis. TSCOT expression was detected in all thymic epithelial cells (TECs), but not in the $CD31^+$endothelial cell lineage in fetal thymus. In addition, ABC transporter-dependent side population and Sca-$1^+$ fetal TEC populations both contain TSCOT-expressing cells, indicating TEC stem cells express TSCOT. TSCOT expression was identified as early as in differentiating embryonic stem cells. TSCOT expression is not under the control of Foxn1 since TSCOT is present in the thymic rudiment of nude mice. By searching variations in the expression levels, TSCOT is positively associated with Grhl3 and Irf6. Cytokines such as IL1b, IL22 and IL24 are the potential regulators of the TSCOT expression. Surprisingly, we found TSCOT expression in the lung is diminished in lung cancers, suggesting TSCOT may be involved in the suppression of lung tumor development. Based on these results, a model for TEC differentiation from the stem cells was proposed in context of multiple epithelial organ formation.