• Title/Summary/Keyword: steep slope failure

Search Result 33, Processing Time 0.029 seconds

A Study on Estimating Shear Strength of Continuum Rock Slope (연속체 암반비탈면의 강도정수 산정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung;Hur, Ik;Lee, Jun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.5-19
    • /
    • 2019
  • Considering the natural phenomenon in which steep slopes ($65^{\circ}{\sim}85^{\circ}$) consisting of rock mass remain stable for decades, slopes steeper than 1:0.5 (the standard of slope angle for blast rock) may be applied in geotechnical conditions which are similar to those above at the design and initial construction stages. In the process of analysing the stability of a good to fair continuum rock slope that can be designed as a steep slope, a general method of estimating rock mass strength properties from design practice perspective was required. Practical and genealized engineering methods of determining the properties of a rock mass are important for a good continuum rock slope that can be designed as a steep slope. The Genealized Hoek-Brown (H-B) failure criterion and GSI (Geological Strength Index), which were revised and supplemented by Hoek et al. (2002), were assessed as rock mass characterization systems fully taking into account the effects of discontinuities, and were widely utilized as a method for calculating equivalent Mohr-Coulomb shear strength (balancing the areas) according to stress changes. The concept of calculating equivalent M-C shear strength according to the change of confining stress range was proposed, and on a slope, the equivalent shear strength changes sensitively with changes in the maximum confining stress (${{\sigma}^{\prime}}_{3max}$ or normal stress), making it difficult to use it in practical design. In this study, the method of estimating the strength properties (an iso-angle division method) that can be applied universally within the maximum confining stress range for a good to fair continuum rock mass slope is proposed by applying the H-B failure criterion. In order to assess the validity and applicability of the proposed method of estimating the shear strength (A), the rock slope, which is a study object, was selected as the type of rock (igneous, metamorphic, sedimentary) on the steep slope near the existing working design site. It is compared and analyzed with the equivalent M-C shear strength (balancing the areas) proposed by Hoek. The equivalent M-C shear strength of the balancing the areas method and iso-angle division method was estimated using the RocLab program (geotechnical properties calculation software based on the H-B failure criterion (2002)) by using the basic data of the laboratory rock triaxial compression test at the existing working design site and the face mapping of discontinuities on the rock slope of study area. The calculated equivalent M-C shear strength of the balancing the areas method was interlinked to show very large or small cohesion and internal friction angles (generally, greater than $45^{\circ}$). The equivalent M-C shear strength of the iso-angle division is in-between the equivalent M-C shear properties of the balancing the areas, and the internal friction angles show a range of $30^{\circ}$ to $42^{\circ}$. We compared and analyzed the shear strength (A) of the iso-angle division method at the study area with the shear strength (B) of the existing working design site with similar or the same grade RMR each other. The application of the proposed iso-angle division method was indirectly evaluated through the results of the stability analysis (limit equilibrium analysis and finite element analysis) applied with these the strength properties. The difference between A and B of the shear strength is about 10%. LEM results (in wet condition) showed that Fs (A) = 14.08~58.22 (average 32.9) and Fs (B) = 18.39~60.04 (average 32.2), which were similar in accordance with the same rock types. As a result of FEM, displacement (A) = 0.13~0.65 mm (average 0.27 mm) and displacement (B) = 0.14~1.07 mm (average 0.37 mm). Using the GSI and Hoek-Brown failure criterion, the significant result could be identified in the application evaluation. Therefore, the strength properties of rock mass estimated by the iso-angle division method could be applied with practical shear strength.

Consideration on shielding failure and back flashover through lightning fault analysis within the country (국내에서 발생한 낙뢰고장 분석을 통한 직격뢰 및 역섬락 고찰)

  • Choi, Han-Yeol;Min, Byeong-Wook;Park, Soon-Kyu;Lee, Bong-Hee;Gu, Sung-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.280_281
    • /
    • 2009
  • The past 3 years study on the lightning faults data shows that the main reason is shielding failure rather than back flashover. Accordingly, we need to thoroughly consider about shielding failure angle of tower. Also, transmission line damage caused by shielding can be minimized if we avoid the steep slope area as a transmission line route.

  • PDF

Kinematic Analysis of Plane Failure for Rock Slope Using GIS and Probabilistic Analysis Method (GIS와 확률론적 해석 기법을 기반으로 한 평면파괴의 운동학적 안정성 해석)

  • Lee, Seok Hwan;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.121-131
    • /
    • 2014
  • The stability of rock slope is mainly controlled by the orientation and shear strength of discontinuties in rock mass. Therefore, in kinematic analysis, the orientation of the combination of discontinuities and slope face is examined to determine if certain modes of failure can be occurred. In previous kinematic analysis, a representative orientation of the slope face and mean orientation of discontinuity set were used as input parameters. However, since the orientations of slope face varies according to locations of measurement, the representative slope face orientation could cause misunderstanding for kinematic instability. In addition, since the orientations of each discontinuity are scattered in the same discontinuity set, there is the possibility that uncertainties are involved in the procedure of kinematic analysis. Therefore, in this study, the detailed digital topographic map was used to obtain the orientation of slope face. In addition, the probabilistic analysis approach was utilized to deal properly with the uncertainties in discontinuity orientation. The proposed approach was applied to steep slopes in mountain road located in Baehuryeong, Chunncheon city, Gangwon-Do. The analysis results obtained from the deterministic and probabilistic analysis were compared to check the feasibility of proposed the analysis.

A Study on the Effect of Collector Well on the Landcreep Slope (땅밀림 비탈면내 집수정 설치 효과 연구)

  • Jeon, Byeong Chu;Lee, Su Gon
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.123-136
    • /
    • 2019
  • This study examines the effect of collector well installed to reduce groundwater level in the regions with the occurrence of landcreep, a soil mass movement triggered by instability on slopes. Slopes are prone to failure as a result of instability caused by its internal, topographic and geological properties as well as due to external factors such as rainfall and earthquake. In Korea during the rain season, rainfall infiltration affects the groundwater level in soil, building up porewater pressure and load, and finally drives slopes to collapse. Slope failure caused by rainfall infiltration has been leading to a drastic forest degradation. The studied slope is located adjacent to a valley, its terrain corresponds to piedmont gentle slope, while the upper part of the failure surface is steep. After reinforcing the terrain where landcreep had occurred and installing collector well on the slope, we measured the changes in the groundwater level. In order to analyze the relationship between the well and the slope, we calculated the ratio of groundwater level to rainfall before and after the installation of the collector well. As a result, it is confirmed that the ratio increases after the installation of the well, which in turn reduces the groundwater level. Analysis of the change in groundwater level after 3, 7, 15 days antecedent rainfall showed that the higher the overall groundwater level, the less the value ($r_p$) of groundwater level-rainfall ratio is, while the value becomes relatively greater when the groundwater level is low. In particular, if a slope has a large catchment basin as is in the case of the studied site, antecedent rainfall affects groundwater level in the order of 3 < 7 < 15 days.

A Study for Characterization on Shallow Behavior of Soil Slope by Flume Experiments (토조실험 장치를 이용한 토사비탈면 표층거동 특성 연구)

  • Suk, Jae-wook;Park, Sung-Yong;Na, Geon-ha;Kang, Hyo-Sub
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.489-499
    • /
    • 2018
  • A flume experiments was used to study the characteristics of the surface displacements and volumetric water contents (VWC) during torrential rain. The surface displacement and VWC of the granite weathered soil were measured for rainfall intensity (100, 200 mm/hr) and initial ground condition (VWC 7, 14, 26%). The test processes were also recorded by video cameras. According to the test results, The shallow failure is classified into three types: retrogressive failure, progressive failure and defined failure. In the case of retrogressive failure and progressive failure, relatively large damage could occur due to the feature that soil is deposited to the bottom of the slope. the shallow failure occurred when the VWC reached a certain value regardless of the initial soil condition. It was found that the shallow failure can be predicted through the increase patton of the VWC under the condition of the ground dry condition (VWC 7%) and the natural condition (VWC 14%). For high rainfall intensity, progressive failure predominated, and rainfall intensity above a certain level did not affect wetting front transition.

Evaluation of Durability and Slope Stability of Green Soil using Cementitious Materials (시멘트 계 재료를 사용한 녹생토의 내구성 및 사면 안정성 평가)

  • Kim, Il-Sun;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.45-53
    • /
    • 2018
  • Among the various slope stabilization methods, the green soil method based on the growth of plants is advantageous to the environment, but the durability and slope stability are insufficient when the green soil method is applied to a steep slope and rock slope sites. Therefore, in this study, green soil, which improved the adhesion performance and the vegetation environment, was developed using cementitious materials and ECG, and the durability and slope stability as well as the possibility of its use as a rock vegetation base material were assessed. From the results, the adhesive force and internal friction angle were higher than that of the existing green soil so that it could be used for in situ construction. The soil hardness value was 26 mm, which was slightly higher than that of the best growth condition of the plant, 18~23 mm, and the drying shrinkage strain was approximately 3%; hence, it is not expected to affect the durability of green soil. The results of a rainfall intensity simulation for evaluating the slope adhesion force showed that slope failure did not occur under all conditions. The damage decreased with increasing slope angle. Therefore, the green soils developed in this study have excellent durability and slope stability and can be used for rock slope sites.

Intra-tracheal Administration of the Disinfectant Chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) in a Mouse Model to Evaluate a Causal Association with Death (마우스의 기도 내 점적을 통한 가습기살균제 CMIT/MIT와 사망 간의 원인적 연관성에 관한 연구)

  • Kim, Hayoung;Chung, Yonghyun;Park, Yeongchul
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.247-256
    • /
    • 2017
  • Objectives: The deaths of Korean victims exposed to the disinfectant CMIT/MIT have remained unresolved. This is mainly due to a lack of concordance between the few available toxicity tests and the abundant epidemiological data, making it difficult to establish a cause-and-effect relationship. Therefore, this study was carried out to investigate any potential associations between CMIT/MIT exposure and death. Methods: Groups of experimental and control C57BL/6 mice were instilled (in the trachea) with chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) using a visual instillobot. CMIT/MIT was instilled over a period of three days and eight weeks, respectively, to achieve acute and chronic exposures. A threshold dose-response model was applied for estimating the threshold level as one line of evidence for a causal association between CMIT/MIT and death. Results: An acute exposure of 1.2 mg ai/kg/day of CMIT/MIT was estimated to reflect the threshold for death. The dose-response curve with this threshold showed a very steep slope and a narrow range of CMIT/MIT exposures. The narrow range of CMIT/MIT exposures, in particular, indicated an evident boundary between survival and death, thus implicating a strong causal association. A similar threshold dose-response relationship observed following acute exposure was also seen following chronic exposure to CMIT/MIT. Airborne disinfectant exposure was visible as minimal or mild lung damage with no fibrosis, as shown by histopathological tests. However, many observations are considered to be functional respiratory tract or lung failure due to death, as observed in necropsies of the mice that died due to CMIT/MIT exposures. Conclusions: There are two strong lines of evidence for a causal association between death and CMIT/MIT exposure: 1) The threshold dose-response curve, with a very steep slope and a narrow range of CMIT/MIT exposures showing a visible boundary between survival and death; and 2) many cases of functional respiratory or lung failure.

Analysis of Debris Flow Type in Gangwon Province by Database Construction (DB구축을 통한 강원지역 토석류 유형 분석)

  • Jun, Kyoung-Jea;Kim, Gi-hong;Yune, Chan-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.171-179
    • /
    • 2013
  • In recent years in Korea, Typhoon Rusa (2002), Typhoon Maemi (2003), and the localized extreme rainfall followed by Typhoon Ewiniar in 2006 devastated residential areas, roads, and agricultural lands in Gangwon province where 90% of the area is in mountainous regions. Most of the economic losses and casualties were concentrated in the area near the mountain valleys and creeks due to the floods and debris flows. In this study, DATABASE, which includes a total 180 debris flow events in the Gangwon area, was created by collecting the hazard records and field investigations of existing debris flow sites. Analysis results showed that the most of the debris flows in Gangwon province initiated from the small slope failure with relatively steep slope of $18.1^{\circ}$. And they flowed short distances about 420 m in gentle slope with the average angle of $18.1^{\circ}$. In addition, rainfall condition was important for the triggering of debris flow not only at the day of debris flow but also extended period of rainfall before debris flow.

Studies on Debris Flows by Heavy Rainfall in Osaek Area in July 2006 (2006년 7월 집중호우로 인한 오색천 유역의 토석류 발생과 그 특성)

  • YANG, Heakun;PARK, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.25-35
    • /
    • 2008
  • Typhoon Ewiniar and Bilis followed by heavy rainfall in July 2006 triggered massive slope failures and debris flows along the Osaek valley within Seoraksan National Park. Since national road 44 is constructed along the fault-line, the susceptibility of hazard in the area is very high. Debris flows in Osaekcheon are mobilized from landslides near the ridgelines and peaks when heavy rainfall elevates pore pressure and adds weight to the hillslopes, causing failure. Stream flows falling onto the existing colluvium or channel-margin deposits also trigger debris flows. Steep slopes constructed along the road and thin regolith in the slope is the main reason for the landslide in the upper stream. In middle reaches of stream, under-fit drainage utilities and narrow bridges cause the overflow, this then triggers debris flow. Overflowing and erosion in the channel margin deposits is main reasons for the debris flow. The intensities and frequencies of heavy rainfall are certain to increase, so early warning and management system for the landslide-related hazard is urgently needed.

Ultimate behavior of RC hyperbolic paraboloid saddle shell

  • Min, Chang-Shik
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.507-521
    • /
    • 1997
  • The ultimate behavior of a reinforced concrete hyperbolic paraboloid saddle shell under uniformly distributed vertical load is investigated using an inelastic, large displacement finite-element program originally developed at North Carolina State University. Unlike with the author's previous study which shows that the saddle shell possesses a tremendous capacity to redistribute the stresses, introducing tension stiffening in the model the cracks developed are no longer through cracks and formed as primarily bending cracks. Even though with small tension stiffening effect, the behavior of the shell is changed markedly from the one without tension stiffening effect. The load-deflection curves are straight and the slope of the curves is quite steep and remains unchanged with varying the tension stiffening parameters. The failure of the shell took place quite suddenly in a cantilever mode initiated by a formation of yield lines in a direction parallel to the support-to-support diagonal. The higher the tension stiffening parameters the higher is the ultimate load. The present study shows that the ultimate behavior of the shell primarily depends on the concrete tensile characteristics, such as tensile strength (before cracking) and the effective tension stiffening (after cracking). As the concrete characteristics would vary over the life of the shell, a degree of uncertainty is involved in deciding a specified ultimate strength of the saddle shell studied. By the present study, however, the overload factors based on ACI 318-95 are larger than unity for all the cases studied except that the tension stiffening parameter is weak by 3 with and without the large displacement effect, which shows that the Lin-Scordelis saddle shell studied here is at least safe.