DOI QR코드

DOI QR Code

연속체 암반비탈면의 강도정수 산정 연구

A Study on Estimating Shear Strength of Continuum Rock Slope

  • 김형민 (서울시립대학교 대학원 토목공학과) ;
  • 이수곤 (서울시립대학교 토목공학과) ;
  • 이벽규 ((주)새터기술) ;
  • 우재경 ((주)제일엔지니어링) ;
  • 허익 ((주)대륜엔지니어링) ;
  • 이준기 ((주)대륜엔지니어링)
  • 투고 : 2019.02.11
  • 심사 : 2019.05.08
  • 발행 : 2019.05.31

초록

암반으로 구성되어 있는 급경사($65^{\circ}{\sim}85^{\circ}$)비탈면이 장기간 안정한 상태로 유지되고 있는 자연현상을 고려할 때, 설계 및 초기 시공 단계에서 위와 유사한 지반 상태로 이루어진 깎기 암반비탈면에 대해 1:0.5(발파암 경사 기준)보다 급한 경사를 적용할 수 있을 것이다. 급경사로 설계 가능한 양호한 연속체 암반비탈면의 안정성을 검토하는 과정에서, 설계실무 측면에서 범용적인 암반강도정수 산정방법이 필요하게 되었다. Hoek 등(2002)이 수정 보완하여 발표한 Hoek-Brown 파괴기준과 GSI분류는 불연속구조의 영향을 충분히 고려한 암반특성화 시스템으로 평가되었으며, 응력변화에 따라 등가 Mohr-Coulomb 강도정수(등면적법)를 산출하는 방법을 제안하였다. 비탈면에서는 등가 M-C 강도정수가 최대구속응력(${{\sigma}^{\prime}}_{3max}$ 또는 수직응력)변화에 따라 민감하게 변화하므로 실무적으로 활용하기에 어려운 점이 있다. 이 연구에서는 양호한 연속체 암반비탈면에 대해 최대구속응력 범위이내에서 범용적으로 적용할 수 있는 강도정수산정방법(등각분할법)을 H-B 파괴기준을 응용하여 제안한다. 등각분할법 강도정수(A)의 타당성 및 적용성을 평가하기 위해, 연구대상 암반비탈면을 기존 실시설계 현장 인근에 있는 급경사 비탈면에서 암석종류별(화성암, 변성암, 퇴적암)로 선정하고, Hoek이 제시한 등가 M-C 강도정수(등면적법)들과 비교 분석하였다. 등면적법 및 등각분할법 등가 M-C 강도정수는 기본적인 자료인 기존 실시설계 현장의 실내 암석 삼축압축시험과 연구대상 암반비탈면의 불연속구조의 특성조사(Face Mapping)를 통해 RocLab 프로그램(H-B 파괴기준을 기본으로 전산화된 지반정수 산정 소프트웨어)을 활용하여 산정하였다. 산정된 등면적법 등가 M-C 강도정수는 상호 연동되어 점착력과 내부마찰각이 아주 크거나($45^{\circ}$ 이상) 작게 나타났다. 등각분할법 등가 M-C 강도정수는 등면적법 등가 M-C 강도정수의 중간 정도이며, 내부마찰각은 $30^{\circ}{\sim}42^{\circ}$의 범위를 보인다. 연구대상 암반비탈면의 등각분할법 강도정수(A)와 기존 실시 설계 현장에서 연구대상 암반비탈면과 유사한 암반상태(동일 등급 RMR)에 적용한 강도정수(B)와 비교 분석하고, 이 지반정수들로 적용한 비탈면 안정해석(한계평형해석과 유한요소해석) 결과를 통해 제안한 등각분할법의 적용성을 간접적으로 평가하였다. A와 B의 강도정수 차이는 10% 정도이다. 한계평형해석 결과(우기 기준), A적용 안전율(Fs)=14.08~58.22(평균 32.9), B적용 안전율(Fs)=18.39~60.04(평균 32.2)이며, 각 동일한 암석종류에 따라 상호 유사하게 나타났다. 유한요소 해석 결과, A적용 변위=0.13~0.65mm(평균 0.27mm), B적용 변위=0.14~1.07mm(평균 0.37mm)으로 매우 유사하다. H-B 파괴기준을 응용하여 등각분할법으로 산출한 지반 정수를 실무적인 전단강도로 적용할 수 있는 적용성 평가에서 유의미한 결과를 확인할 수 있었다.

Considering the natural phenomenon in which steep slopes ($65^{\circ}{\sim}85^{\circ}$) consisting of rock mass remain stable for decades, slopes steeper than 1:0.5 (the standard of slope angle for blast rock) may be applied in geotechnical conditions which are similar to those above at the design and initial construction stages. In the process of analysing the stability of a good to fair continuum rock slope that can be designed as a steep slope, a general method of estimating rock mass strength properties from design practice perspective was required. Practical and genealized engineering methods of determining the properties of a rock mass are important for a good continuum rock slope that can be designed as a steep slope. The Genealized Hoek-Brown (H-B) failure criterion and GSI (Geological Strength Index), which were revised and supplemented by Hoek et al. (2002), were assessed as rock mass characterization systems fully taking into account the effects of discontinuities, and were widely utilized as a method for calculating equivalent Mohr-Coulomb shear strength (balancing the areas) according to stress changes. The concept of calculating equivalent M-C shear strength according to the change of confining stress range was proposed, and on a slope, the equivalent shear strength changes sensitively with changes in the maximum confining stress (${{\sigma}^{\prime}}_{3max}$ or normal stress), making it difficult to use it in practical design. In this study, the method of estimating the strength properties (an iso-angle division method) that can be applied universally within the maximum confining stress range for a good to fair continuum rock mass slope is proposed by applying the H-B failure criterion. In order to assess the validity and applicability of the proposed method of estimating the shear strength (A), the rock slope, which is a study object, was selected as the type of rock (igneous, metamorphic, sedimentary) on the steep slope near the existing working design site. It is compared and analyzed with the equivalent M-C shear strength (balancing the areas) proposed by Hoek. The equivalent M-C shear strength of the balancing the areas method and iso-angle division method was estimated using the RocLab program (geotechnical properties calculation software based on the H-B failure criterion (2002)) by using the basic data of the laboratory rock triaxial compression test at the existing working design site and the face mapping of discontinuities on the rock slope of study area. The calculated equivalent M-C shear strength of the balancing the areas method was interlinked to show very large or small cohesion and internal friction angles (generally, greater than $45^{\circ}$). The equivalent M-C shear strength of the iso-angle division is in-between the equivalent M-C shear properties of the balancing the areas, and the internal friction angles show a range of $30^{\circ}$ to $42^{\circ}$. We compared and analyzed the shear strength (A) of the iso-angle division method at the study area with the shear strength (B) of the existing working design site with similar or the same grade RMR each other. The application of the proposed iso-angle division method was indirectly evaluated through the results of the stability analysis (limit equilibrium analysis and finite element analysis) applied with these the strength properties. The difference between A and B of the shear strength is about 10%. LEM results (in wet condition) showed that Fs (A) = 14.08~58.22 (average 32.9) and Fs (B) = 18.39~60.04 (average 32.2), which were similar in accordance with the same rock types. As a result of FEM, displacement (A) = 0.13~0.65 mm (average 0.27 mm) and displacement (B) = 0.14~1.07 mm (average 0.37 mm). Using the GSI and Hoek-Brown failure criterion, the significant result could be identified in the application evaluation. Therefore, the strength properties of rock mass estimated by the iso-angle division method could be applied with practical shear strength.

키워드

GJBGC4_2019_v35n5_5_f0001.png 이미지

Fig. 1. Estimating shear strength suggested by Hoek (2002)

GJBGC4_2019_v35n5_5_f0002.png 이미지

Fig. 2. Estimating shear strength by Iso-Angle Division method in continuum rock slope

GJBGC4_2019_v35n5_5_f0003.png 이미지

Fig. 3. Estimating shear strength suggested by Hoek for slope stress

GJBGC4_2019_v35n5_5_f0004.png 이미지

Fig. 4. Estimating shear strength by Iso-Angle Division method in continuum rock slope

GJBGC4_2019_v35n5_5_f0005.png 이미지

Fig. 5. Safety facter of LEM (wet condition) as shear strength of Iso-Angle Division method (A) and working design (B) for granite slope

GJBGC4_2019_v35n5_5_f0006.png 이미지

Fig. 6. FEM (displacement : mm) as geotecnical strength of Iso-Angle Division method (A) and working design (B) for granite slope

Table 1. Engineering rock mass classification, discontinuity dip and slope angle of rock mass slope in study area

GJBGC4_2019_v35n5_5_t0001.png 이미지

Table 2. Shear strength of rock slope induced by H-B envelope

GJBGC4_2019_v35n5_5_t0002.png 이미지

Table 3. Shear strength of Iso-Angle Division method (A) and working design (B)

GJBGC4_2019_v35n5_5_t0003.png 이미지

Table 4. Numerical analysis result applied geotecnical strength of Iso-Angle Division method (A) and working design (B)

GJBGC4_2019_v35n5_5_t0004.png 이미지

참고문헌

  1. Barton, N. (1995), "The Influence of joint properties in modelling jointed rock masses", Keynote lecture. In : 8th Cong. ISRM.
  2. Bieniawski, Z.T. (1973), "Enginerring Classification of Jointed Rock Masses", Trans Safr Inst Civ Eng 15, pp.335-344.
  3. Bieniawski, Z.T. (1993), "Classification of Rock Masses for Engineering : The RMR System and Future Trends", In Comprehensive Rock Engineering, pp.553-573.
  4. Brown, E.T. (1981), "Rock Characterization, Testing and Monitoring-ISRM Suggested Methods", pp.71-183.
  5. Chun, B.S., Lee, J.M., Choi, H.S., and Seo, D.D. (2003), "Numerical Study on the Tability Analysis of Rock Slope Considering Nonlinear Characteristics of Hoek-Brown Failure Criterion", Journal of The Korean Geo-Environmental Society, Vol.4, Issue 2, pp.77-9 (in Korean with English abstrat).
  6. Hoek, E. and Bray, J.W. (1981), "Rock Slope Engineering", The Institution of Mining and Metallurgy. London.
  7. Hoek, E. (1994), "Strength of Rock and Rock Masses", ISRM News Journal 2(2), pp.4-16.
  8. Hoek, E. and Brown, E.T. (1980), "Empirical Strength Criterion for Rock Masses", J. Geotech. Eng. Div., pp.1013-1035.
  9. Hoek, E. and Brown, E.T. (1997), "Practical Estimates of Rock Mass Strength", International Journal of Rock Mechanics and Mining Sciences, pp.1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  10. Hoek, E., Carranza, T.C., and Corkum, B. (2002), "Hoek-Brown Criterion-2002 Edition", Proc. NARMS-TAC Conference, pp.267-273.
  11. Hoek, E., Carter, T.G., and Diederichs, M.S. (2013), "Quantification of the Geological Strength Index Chart", ARMA (American Rock Mechanics Association).
  12. Hoek, E. (2012), "Blast damage factor D", Technical note for RocNews.
  13. Jin, K.Y. (2006), "The Evaluation for estimation method of shear strength parameters of rock masses using RMR", Kyungwon University master's thesis(in Korean with English abstrat).
  14. Joh, J.H. (2004), "Numerical study on rock slope stability analysis by non-linear Hoek-Brown failure criterion", Han Yang University master's thesis (in Korean with English abstrat).
  15. Jung, J.H. (2012), "A Study on stability of rock slope by shear strength", Deajeon University master's thesis (in Korean with English abstrat).
  16. Marinos, P. and Hoek E. (2000), "GSI : A Geologically Friendly Tool for Rock Mass Strenth Estimation", GeoEng 2000, Technomic publ, pp.1422-1442.
  17. Marinos, V., Marinos, P., and Hoek, E. (2005), "The Geological Strength Index : Applications and Limitations", Bull. Eng. Geol. Environ., pp.55-65.
  18. Omar, T. and Sadrekarimi, A. (2015), "Effect of Triaxial Specimen Size on Engineering Design and Analysis", International Journal of Geo-Engineering, Vol.6, Paper no.5, DOI 10.1186/s40703-015-0010-7
  19. Palmstrom, A. (2005), "Measurements of and Correlations between Block Size and Rock Quality Designation (RQD)", Tunnels and Underground Space Technology, pp.362-377.
  20. Sonmez, H., Gokceoglu, C., and Ulusay, R. (2003), "An Application of Fuzzy Sets to the Geological Strength Index (GSI) System Used in Rock Engineering", Engineering Applications of Artificial Intelligence, Vol.16, pp.251-269. https://doi.org/10.1016/S0952-1976(03)00002-2
  21. Sun, W.C., Hwang, S.H., Chung, S.K, Lee, S.K., and Han, K.C. (2001), "Correlation between the Rock Mass Classification Methods", Jounal of the Korean Geotechnical Society, Vol.17, No.4, pp. 127-134 (in Korean with English abstrat).
  22. The Korean Geotechnical Society (2000), "Rock engineering for civil engineer", Goomiseokwan, Seoul, 678 pp. (in Korean).
  23. Yang, K.H. (2007), "A Comparative study on stability analysis of rock-cut slope using shear strength reduction method", Sung Kyun Kwan University master's thesis (in Korean with English abstrat).