• Title/Summary/Keyword: steel-girder bridges

Search Result 447, Processing Time 0.028 seconds

Investigation of Sectional Force on Increasing of Dead Load with Bridge Deck Overlay using Electric Arc Furnace Slag Sand (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 교면포장(橋面鋪裝) 시 단위질량(單位質量) 증대(增大)에 따른 슬래브 단면력(斷面力) 검토(檢討))

  • Jung, Won-Kyong;Chon, Beom Jun;Gil, Yong-Soo
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.62-70
    • /
    • 2013
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace slag to concrete aggregates. In this study, Electric arc furnace slag is used in the PMC(Polymer Modified Concrete) which is applied a bridge pavement of rehabilitation, largely. In that case, this study evaluates the structural safety about increasing the specific weight. The 4-type bridges(RC slab bridge, RC rigid-frame bridge, PSC Beam bridge, Steel box girder bridge) pavement's increasing the total dead load is in 1 ~ 2%. Design moments in a load combination are increased less then 2%. safety factor is decreased less than 3%. Therefore, the structural safety has no problem for applying the electric arc furnace slag within PMC in bridge.

Case Study on Economical Fabrication and Erection of Steel Structure and Reduction in Field Erection Time (경제적 철골제작$\cdot$설치 및 공기단축 사례분석연구)

  • Ahn Jae-Bong;Choi Yoon ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.183-192
    • /
    • 2004
  • Even in Korea the number of steel structure buildings that allow internal space and easy change of their layouts in accordance with the purpose of buildings and box-type steel bridges constructed with thick plates with thickness in a rage just from a few $\beta$AE to \$100\beta$AE is increasing these days and therefore, domestic fabrication and processing technology of members for steel structures is being improved at a pace faster than in the past to meet the growing requirements of consumers for high reliability on quality control on the related steel structures. However, most domestic fabricators os steel structures who are turning out their steel products in accordance with the designs prepared by engineering companies in their respective works for the sake of cost cut more than anything else, hesitating to introduce any advanced new technology into themselves. In the case of the steel structure design application for small and mid-size buildings in particular, it is quite meaningful not only for those who are involved in steel structure business, but also for the people working at construction work fields to review the result of the study on the connections of steel structure members deigned to obtain superb quality of steel structures within short period for steel fabrication and erection at fields in economical ways, as there is a glowing tendency seeking standardization of connection of steel structure members as well as whole structure together with the development on design of construction system of buildings including their exterior and interior decoration materials, manufacture of the related members and fabrication technique structure. This paper has been prepared with the aim to review the peculiar characteristics of buildings constructed with the main frames of steel structures and actual cases of the change made ing the connections between steel structure columns and between columns and girder members in order to reduce the work period necessary for fabrication and erection of steel structures at the maximum as well as the some examples of steel structures fabricated through automatic welding by robots for box-type columns in addition to the description of the problems found in the course of fabricating those steel structures, suggesting possible counter-measures to solve them.

Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads (지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석)

  • Jun-Tai, Jeon;Hoyoung Son;Bu-Seog, Ju
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.976-983
    • /
    • 2023
  • Purpose: The dynamic behavior of a bridge structure under seismic loading depends on many uncertainties, such as the nature of the seismic waves and the material and geometric properties. However, not all uncertainties have a significant impact on the dynamic behavior of a bridge structure. Since probabilistic seismic performance evaluation considering even low-impact uncertainties is computationally expensive, the uncertainties should be identified by considering their impact on the dynamic behavior of the bridge. Therefore, in this study, a global sensitivity analysis was performed to identify the main parameters affecting the dynamic behavior of bridges with I-curved girders. Method: Considering the uncertainty of the earthquake and the material and geometric uncertainty of the curved bridge, a finite element analysis was performed, and a surrogate model was developed based on the analysis results. The surrogate model was evaluated using performance metrics such as coefficient of determination, and finally, a global sensitivity analysis based on the surrogate model was performed. Result: The uncertainty factors that have the greatest influence on the stress response of the I-curved girder under seismic loading are the peak ground acceleration (PGA), the height of the bridge (h), and the yield stress of the steel (fy). The main effect sensitivity indices of PGA, h, and fy were found to be 0.7096, 0.0839, and 0.0352, respectively, and the total sensitivity indices were found to be 0.9459, 0.1297, and 0.0678, respectively. Conclusion: The stress response of the I-shaped curved girder is dominated by the uncertainty of the input motions and is strongly influenced by the interaction effect between each uncertainty factor. Therefore, additional sensitivity analysis of the uncertainty of the input motions, such as the number of input motions and the intensity measure(IM), and a global sensitivity analysis considering the structural uncertainty, such as the number and curvature of the curved girders, are required.

A Experimental Comparison Study on Structural Behavior of Prefabricated Bridge (조립식 바닥판 교량의 거동에 대한 실험적 비교 연구)

  • Han, Man-Yup;Kim, Seong-Dong;Jin, Kyung-Seok;Kang, Sang-Hun;Cho, Byung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.25-28
    • /
    • 2008
  • Currently, the prefabricated bridge having the effects to reduce the term of works and the cost of construction is often studied and countries such as America have already developed members, the parts of it, and the technique of construction. In addition, they have supplied them to the fields. The study of prefabricated method of steel composite bridge, which has the precast deck - plate and main girder fixed by high tension bolt and can resist horizontal sheer, is being progressed. However, it is difficult to understand the characteristics of the prefabricated bridge's behavior when the superstructure of the prefabricated method is analyzed by applying to the analysis model of existing bridges. Therefore, this study has the purpose of understanding real structural behavior of prefabricated bridge through comparison and analysis between the structural analysis model reflecting the characteristics of the real prefabricated bridge's superstructure and real size experiment.

  • PDF

A Methodology for Monitoring Prestressed Force of Bridges Using OFS-embedded Stand (광섬유센서가 내장된 강연선을 이용한 교량의 장력 모니터링 방법)

  • Kim, Jae-Min;Kim, Hyun-Woo;Kim, Young-Sang;Kim, Jin-Won;Yun, Chung-Bang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.287-294
    • /
    • 2008
  • This study proposes a novel method for in service evaluation of tension force of a prestressed 7-wire strand which is frequently employed for retrofitting bridge superstructure. The smart strand is made by replacing the straight king wire of the strand with an instrumented steel tube in which the FBG sensor is embedded. Since the strain of the smart strand can easily be measured using the sensor, it is possible to monitor tension force of the strand during the service. For the sake of demonstrating effectiveness of the proposed strand, we came up with a 7.0m long prototype with 2 FBG sensors, and it is applied as an external tendon to a 6.4m long and 0.6 high RC T-shaped beam. A loading-unloading test has been carried out, and estimated tension forces using the smart strand are compared with measured forces by load cell. The comparison showed that the proposed smart tendon is useful and accurate for monitering tension force of the prestressed tendon.

Seismic Fragility Analysis of a Cable-stayed Bridge with Energy Dissipation Devices (에너지 소산장치를 장착한 사장교의 지진 취약도 해석)

  • Park, Won-Suk;Kim, Dong-Seok;Choi, Hyun-Sok;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.1-11
    • /
    • 2006
  • This paper presents a seismic fragility analysis method for a cable-stayed bridge with energy dissipation devices. Model uncertainties represented by random variables include input ground motions, characteristics of energy dissipation devices and the stiffness of cable-stayed bridge. Using linear regression, we established demand models for the fragility analysis from the relationship between maximum responses and the intensity of input ground motions. For capacity models, we considered the moment and shear force of the main tower, longitudinal displacement of the girder, deviation of the stay cables tension and the local buckling of the main steel tower as the limit states for cable-stayed bridge. As a numerical example, fragility analysis results for the 2nd Jindo bridge are presented. The effect of energy dissipation devices is also briefly discussed.

Erection Method for Marine Section of Double Deck Warren Truss in Young Jong Grand Bridge (영종대교 복층 Warren Truss 해상구간 가설공법)

  • Kim Jeong-Woong;Seo Jea-Hwa;Yang Mu-Seok;Yuk Il -Dong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.232-239
    • /
    • 2001
  • Young Jong Grand Bridge is approach traffic road of New Inchon International Airport which covers hub airport function in northeast asia. The total span length of this bridge is $4,420{\cal}m$ and this main bridge type is, the first in the world, Double Deck Self Anchored Suspension Bridge, designed as double deck systems to be arranged by road and railroad. Approach bridges to be connected with main span also are composed double deck steel truss and steel box girder to consider a continuity with this span. Our company erected $1,375{\cal}m$(about 60,000tons) of double deck steel truss bridge type which is composed by 6 traffic lane on upper deck and 4 traffic lane and Double track railroad on lower deck. The original installation method of this bridge was planed to install about 75 meters bridge blocks to use floating crane, after temporary bent was constructed between permanent piers. But this method which had to construct many temporary bents in the sea had the matter that construction periods can become lengthen and construction cost can be risen. To overcome the uncertainty to ensure high qualify of bridge and economic project execution, our company developed new bridge erection method to assure both quality control and economic construction work. The new erection method which was developed by us was one that could transport and install long bridge block, $120{\cal}m$ unit at a time and that temporary bent was not required. We hope that this paper is used as technical data which will erect bridge in the western sea and others marine region.

  • PDF

Transformation of Text Contents of Engineering Documents into an XML Document by using a Technique of Document Structure Extraction (문서구조 추출기법을 이용한 엔지니어링 문서 텍스트 정보의 XML 변환)

  • Lee, Sang-Ho;Park, Junwon;Park, Sang Il;Kim, Bong-Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.849-856
    • /
    • 2011
  • This paper proposes a method for transforming unstructured text contents of engineering documents, which have complex hierarchical structure of subtitles with various heading symbols, into a semi-structured XML document according to the hierarchical subtitle structure. In order to extract the hierarchical structure from plain text information, this study employed a method of document structure extraction which is an analysis technique of the document structure. In addition, a method for processing enumerative text contents was developed to increase overall accuracy during extraction of the subtitles and construction of a hierarchical subtitle structure. An application module was developed based on the proposed method, and the performance of the module was evaluated with 40 test documents containing structural calculation records of bridges. The first test group of 20 documents related to the superstructure of steel girder bridges as applied in a previous study and they were used to verify the enhanced performance of the proposed method. The test results show that the new module guarantees an increase in accuracy and reliability in comparison with the test results of the previous study. The remaining 20 test documents were used to evaluate the applicability of the method. The final mean value of accuracy exceeded 99%, and the standard deviation was 1.52. The final results demonstrate that the proposed method can be applied to diverse heading symbols in various types of engineering documents to represent the hierarchical subtitle structure in a semi-structured XML document.

Estimation Method of Creep Coefficient in Concrete Structures (콘크리트 구조물에서 크리프 계수 추정 방법)

  • Park, Jong-Bum;Park, Jung-Il;Chang, Sung-Pil;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • To predict the time-dependent behavior of concrete structures, the models which describe the time-dependent characteristics of concrete, i.e. creep and shrinkage are required. However, there must be significant differences between the displacements that are obtained using the given creep and shrinkage models and the measured displacements, because of the uncertainties of creep and shrinkage model itself and those of environmental condition. There are some efforts to reduce these error or uncertainties by using the model which are obtained from creep test for the concrete in construction site. Nevertheless, the predicted values from this model may be still different from the actual values due to the same reason. This study aimed to propose a method of estimating the creep coefficient from the measured displacements of concrete structure, where creep model uncertainty factor was considered as an error factor of creep model. Numerical validation for double composite steel box and concrete beam showed desirable feasibility of the presented method. Consideration of the time-dependent characteristics of creep as one of the error factors make it possible to predict long-term behaviors of concrete structures more realistically, especially long-span PSC girder bridges and concrete cable-stayed bridges of which major problem is the geometry control under construction and maintenance.

Seismic Fragility of I-Shape Curved Steel Girder Bridge using Machine Learning Method (머신러닝 기반 I형 곡선 거더 단경간 교량 지진 취약도 분석)

  • Juntai Jeon;Bu-Seog Ju;Ho-Young Son
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.899-907
    • /
    • 2022
  • Purpose: Although many studies on seismic fragility analysis of general bridges have been conducted using machine learning methods, studies on curved bridge structures are insignificant. Therefore, the purpose of this study is to analyze the seismic fragility of bridges with I-shaped curved girders based on the machine learning method considering the material property and geometric uncertainties. Method: Material properties and pier height were considered as uncertainty parameters. Parameters were sampled using the Latin hypercube technique and time history analysis was performed considering the seismic uncertainty. Machine learning data was created by applying artificial neural network and response surface analysis method to the original data. Finally, earthquake fragility analysis was performed using original data and learning data. Result: Parameters were sampled using the Latin hypercube technique, and a total of 160 time history analyzes were performed considering the uncertainty of the earthquake. The analysis result and the predicted value obtained through machine learning were compared, and the coefficient of determination was compared to compare the similarity between the two values. The coefficient of determination of the response surface method was 0.737, which was relatively similar to the observed value. The seismic fragility curve also showed that the predicted value through the response surface method was similar to the observed value. Conclusion: In this study, when the observed value through the finite element analysis and the predicted value through the machine learning method were compared, it was found that the response surface method predicted a result similar to the observed value. However, both machine learning methods were found to underestimate the observed values.