• Title/Summary/Keyword: steel-frame assembly

Search Result 28, Processing Time 0.028 seconds

Development of Carbon Continuous-fiber Composite Frame for Automotive Sun-roof Assembly (자동차용 탄소 연속섬유 복합재 선루프 프레임의 개발에 대한 연구)

  • Kim, Jinbong;Kim, Kyoung-Deok;Kim, Sungjin;Shin, Dongwan;Kim, Dukki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.350-359
    • /
    • 2017
  • This paper presents a new holistic development approach for the carbon continuous-fiber composite frame of an automotive sunroof assembly. The original steel frame has been designed to get higher bending stiffness with its corrugated cross-sectional shape. The new approach uses the prepregs of a fast cure epoxy and PCM manufacturing processing. For higher productivity, the new frames feature a very simple plat cross sectional shape but achieve high bending stiffness through the laminate design. The sandwich structure with a PET foam core was presented. The frames were made of carbon UD laminae covered single carbon fabric on the outer surfaces. The fabrics provide torsional stiffness and also hold the carbon UD fibers floating in the low viscous epoxy resin of prepregs at the curing temperature during processing. The final product yields approximately 18 % savings in weight compared with the original.

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.

Performance of steel beams at elevated temperatures under the effect of axial restraints

  • Liu, T.C.H.;Davies, J.M.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.427-440
    • /
    • 2001
  • The growing use of unprotected or partially protected steelwork in buildings has caused a lively debate regarding the safety of this form of construction. A good deal of recent research has indicated that steel members have a substantial inherent ability to resist fire so that additional fire protection can be either reduced or eliminated completely. A performance based philosophy also extends the study into the effect of structural continuity and the performance of the whole structural totality. As part of the structural system, thermal expansion during the heating phase or contraction during the cooling phase in most beams is likely to be restrained by adjacent parts of the whole system or sub-frame assembly due to compartmentation. This has not been properly addressed before. This paper describes an experimental programme in which unprotected steel beams were tested under load while it is restrained between two columns and additional horizontal restraints with particular concern on the effect of catenary action in the beams when subjected to large deflection at very high temperature. This paper also presents a three-dimensional mathematical modelling, based on the finite element method, of the series of fire tests on the part-frame. The complete analysis starts with an evaluation of temperature distribution in the structure at various time levels. It is followed by a detail 3-D finite element analysis on its structural response as a result of the changing temperature distribution. The principal part of the analysis makes use of an existing finite element package FEAST. The effect of columns being fire-protected and the beam being axially restrained has been modelled adequately in terms of their thermal and structural responses. The consequence of the beam being restrained is that the axial force in the restrained beam starts as a compression, which increases gradually up to a point when the material has deteriorated to such a level that the beam deflects excessively. The axial compression force drops rapidly and changes into a tension force leading to a catenary action, which slows down the beam deflection from running away. Design engineers will be benefited with the consideration of the catenary action.

A Study on the Dynamic Characteristics of Door Module Plate (도어 모듈 플레이트의 동특성 분석에 관한 연구)

  • Bae, Chul-Yong;Kim, Wan-Su;Kim, Chan-Jung;Lee, Bong-Hyun;Jang, Woon-Sung;Mo, Yu-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.918-923
    • /
    • 2007
  • Currently, automotive industries improve the vehicle performance and reduce the development period of vehicle using each module part for the high quality and performance of vehicles. However each component part doesn't generate the noise and vibration problems, sometime these problems are generated on the assembly status between vehicle chassis frame and each module part. On this study, in order to analysis the dynamic characteristics of a shield door module that is a typical module part of vehicles, the acquisition and evaluation process about the vibration and noise of shield door module is developed. Also the possibility to apply to shield door module of the developed process is verified by the comparison with the dynamic characteristics between plastic and steel module plate.

  • PDF

Difference analysis of the collapse behaviors of the single-story beam-column assembly and multi-story planar frame

  • Zheng Tan;Wei-Hui Zhong;Bao Meng;Xing-You Yao;Yu-Hui Zheng;Yao Gao;Shi-Chao Duan
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.265-280
    • /
    • 2024
  • The collapse behavior observed in single-story beam-column assembly (SSBCA) do not accurately represent the actual overall stress characteristic of multi-story frame structure (MSFS) under column loss scenario owing to ignoring the interaction action among different stories, leading to a disconnection between the anti-collapse behaviors of "components" and "overall structures", that is, the anti-collapse performance of frame structures with two different structural scales has not yet formed a combined force. This paper conducts a numerical and theoretical study to explore the difference of the collapse behaviors of the SSBCA and MSFS, and further to reveal the internal force relationships and boundary constraints at beam ends of models SSBCA and MSFS. Based on the previous experimental tests, the corresponding refined numerical simulation models were established and verified, and comparative analysis on the resistant-collapse performance was carried out, based on the validated modeling methods with considering the actual boundary constraints, and the results illustrates that the collapse behaviors of the SSBCA and MSFS is not a simple multiple relationship. Through numerical simulation and theoretical analysis, the development laws of internal force in each story beam under different boundary constraints was clarified, and the coupling relationship between the bending moment at the most unfavorable section and axial force in the composite beam of different stories of multi story frames with weld cover-plated flange connections was obtained. In addition, considering the effect of the yield performance of adjacent columns on the anti-collapse bearing capacities of the SSBCA and MSFS during the large deformation stages, the calculation formula for the equivalent axial stiffness at the beam ends of each story were provided.

Experimental Study on Structural Behavior of Tapered non-compact Frame with Snug-tightened Conditions (밀착조임 볼트체결에 따른 판폭두께비가 큰 변단면 프레임의 구조성능에 관한 실험적 연구)

  • Chung, Kyung-Soo;Jeon, Bae-Ho;Park, Man-Woo;Do, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.257-265
    • /
    • 2012
  • Current trends in steel construction include using tapered, non-compact sections to minimize the use of excess material as much as possible by choosing the cross-sections instead of the classical approach of using prismatic members. In addition, snug conditions, especially the end-plate type, have the advantage of incurring less construction costs and shorter assembly times as opposed to full pre-tensioned conditions. On the other hand, it is important to predict the collapse of the PEB system due to over-loading. Large-scale tests of tapered steel portal frames with non-compact sections were conducted. The primary test parameters included the bolt connection method and the loading condition (vertical and horizontal load). The test results on initial stiffness and load capacity were investigated. Furthermore, comparisons between the analytical and experimental data for load-displacement curves were initiated. In addition, we evaluated the applicability of a snug bolt for the PEB frame in the field.

A study on rotational behaviour of a new industrialised building system connection

  • Moghadasi, Mostafa;Marsono, Abdul Kadir;Mohammadyan-Yasouj, Seyed Esmaeil
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2017
  • The performance of an Industrialised Building System (IBS) consists of prefabricated reinforced concrete components, is greatly affected by the behaviour of the connection between beam and columns. The structural characteristics parameters of a beam-to-column connection like rotational stiffness, strength and ductility can be explained by load-rotation relationship of a full scale H-subframe under gravitational load. Furthermore, the connection's degree of rigidity directly influences the behaviour of the whole frame. In this research, rotational behaviour of a patented innovative beam-to-column connection with unique benefits like easy installation, no wet work, no welding work at assembly site, using a hybrid behaviour of steel and concrete, easy replacement ability, and compatibility with architecture was investigated. The proposed IBS beam-to-column connection includes precast concrete components with embedded steel end connectors. Two full-scale H-subframes constructed with a new IBS and conventional cast in-situ reinforced concrete system beam-to-column connections were tested under incremental static loading. In this paper, load-rotation relationship and ratio of the rigidity of IBS beam-to-column connection are studied and compared with conventional monolithic reinforced concrete connection. It is concluded that this new IBS beam-to-column connection benefits from more rotational ductility than the conventional reinforced concrete connection. Furthermore, the semi-rigid IBS connection rigidity ratio is about 44% of a full rigid connection.

An Experimental Study on Shear Behavior of Internal Reinforced Concrete Beam-Column Assembly (철근콘크리트 보-기둥 내부 접합부의 전단 거동에 관한 실험적 연구)

  • Lee, Jung-Yoon;Kim, Jin-Young;Oh, Ki-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2007
  • The beam-column assembly in a ductile reinforced concrete (RC) frames subjected to seismic loading are generally controlled by shear and bond mechanisms, both of which exhibit poor hysteretic properties. Hence the response of joints is restricted essentially to the elastic domain. The usual earthquake resistant design philosophy of ductile frame buildings allows the beams to form plastic hinges adjacent to beam-column assembly. Increased strain in these plastic hinge regions affect on joint strain to be increased. Thus bond and shear joint strength are decreased. The research reported in this paper presents the test results of five RC beam-column assembly after developing plastic hinges in beams. Main parameter of the test Joints was the amount of the longitudinal tensile reinforcement of the beams. Test results indicted that the ductile capacity of joints increased as the longitudinal tensile reinforcement of the beams decreased. In addition, both the tensile strain of the longitudinal reinforcement bars in the joint and the ductile ratio of the beam-column assemblages increased due to the yielding of steel bars in the plastic hinge regions.

Development of Vertical Separated Tubular Steel Pole (종방향 분할형 관형지지물 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.257-262
    • /
    • 2019
  • Lattice steel towers for overhead transmission lines have been replaced by tubular steel poles due to the visual impact of large and complex shape of truss type. Demand for tubular steel poles consisting of a single frame member continues to grow because of its advantages such as visual minimization, architectural appeal and minimal site consumptions. However, there are some constraints on the transportation and construction. As the diameter of tower base has been enlarged, it may exceed minimum height limit required to pass the tunnel in case of land transportation. Also, in a narrow place where it is not easy to secure the installation areas such as mountainous places, there might be some areas wherein it must secure a wide working space so that large vehicles and working cranes will be allowed to enter. In this paper, we presented a vertical separated tubular steel pole, which is a new type of support that can be implemented for general purpose such as mountainous areas or narrow areas to improve the issues raised by breaking away from the conventional design and fabrication methods. Technical approaches for overcoming the limit of the cross-sectional size is to separate and modularize the cross-section of the tubular steel pole designed with a size that cannot be carried or assembled, and to lighten it with a weight capable of being transported and assembled in a narrow space or mountainous area. As a result of this research, it will be possible to enter small and medium sized vehicles in locations where it is restricted to transport by large-sized vehicles. In the case of mountainous areas, it will be possible to divide it into a weight capable of being carried by a helicopter and it will be easy to adjust and fabricate it with individual modules. Furthermore, in order to break away from the traditional construction method, we proposed the equipment that can be applied to the assembly of Tubular Steel Pole without using a large crane in locations where there is no accessible road or in locations wherein large cranes cannot enter. In particular, this paper shows the movable assembling equipment and some methods that are specialized for vertical separated tubular steel pole consisting of members with reduced weight. The proposed assembly equipment is a device for assembling the body of the Tubular Steel Poles. It will be installed inside the support and the modules can be lifted by using the support itself.

Measurement of Stress and Displacement Fields in Particle Assembly subjected to Shallow Foundation Loading via Photoelasticity Technique (광탄성 기법을 이용한 얕은 기초 하중을 받는 입상체의 응력 및 변위장 측정)

  • Byeon, Bo-Hyeon;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1947-1955
    • /
    • 2013
  • The purpose of this paper is to present an photoelasticity technique for measuring the displacement and stress distribution in particle assembly subjected to shallow foundation loading. Photoelastic measurement technique was employed to visualize the force transmission of a particle assembly. A model assembly bounded by a steel frame was built by stacking bi-dimensional circular particles made of polycarbonate elastomer. Each particle was coated by a thin photoelastic sheet so that the force transmission represented by bright light stripes can be visualized. In a contacted particle, both magnitude and orientation of principal stress difference can also be measured via the photoelasticity technique. The different distributions of the contact stresses at the initial loading and near the failure were quantitatively compared. The photoelastic patterns and displacement fields observed in the pre-failure state disappears immediately after the buckling of confined force chains.