DOI QR코드

DOI QR Code

Measurement of Stress and Displacement Fields in Particle Assembly subjected to Shallow Foundation Loading via Photoelasticity Technique

광탄성 기법을 이용한 얕은 기초 하중을 받는 입상체의 응력 및 변위장 측정

  • 변보현 (경희대학교 사회기반시스템공학과 대학원) ;
  • 정영훈 (경희대학교 사회기반시스템공학과)
  • Received : 2013.05.27
  • Accepted : 2013.07.10
  • Published : 2013.09.30

Abstract

The purpose of this paper is to present an photoelasticity technique for measuring the displacement and stress distribution in particle assembly subjected to shallow foundation loading. Photoelastic measurement technique was employed to visualize the force transmission of a particle assembly. A model assembly bounded by a steel frame was built by stacking bi-dimensional circular particles made of polycarbonate elastomer. Each particle was coated by a thin photoelastic sheet so that the force transmission represented by bright light stripes can be visualized. In a contacted particle, both magnitude and orientation of principal stress difference can also be measured via the photoelasticity technique. The different distributions of the contact stresses at the initial loading and near the failure were quantitatively compared. The photoelastic patterns and displacement fields observed in the pre-failure state disappears immediately after the buckling of confined force chains.

본 논문의 목적은 얕은 기초 하중을 받는 입상체 내의 응력의 분포와 변위를 측정하는 광탄성 기법의 적용 방안을 제시하는 데 있다. 광탄성 측정기법은 입자 집합체의 힘 전달을 시각화하기 위해 사용 되었다. 실내 모형시험은 스틸 프레임으로 경계면을 만들고 폴리카보네이트 탄성중합체로 만들어진 이차원 원형 입자들을 적층하여 구성하였다. 광탄성 시트를 원형 입자에 코팅함으로써 힘 전달의 패턴을 밝은 빛의 줄무늬 형태로 확인할 수 있었고, 광탄성 측정 기법을 통해 접촉되어 있는 입자들에서의 주 응력차의 크기, 방향 또한 측정 할 수 있었다. 변위장은 디지털 이미지 해석 기법을 사용하여 측정 하였다. 하중 재하 초기 상태와 파괴 근처의 상태에서 서로 다른 접촉력의 분포를 정량적으로 분석하였다. 파괴 이전 단계에서 관측된 광탄성 패턴과 변위장은 접촉력 사슬의 좌굴 발생 이후 즉시 사라짐을 확인하였다.

Keywords

References

  1. Allersma, H. G. B. (1982). "Determination of the stress distribution in assemblies of photoelastic particles." Exp. Mech., Vol. 22, No. 9, pp. 336-341. https://doi.org/10.1007/BF02328536
  2. Baek, T. H. and Kim, M. S. (2004). "Construction and calibration test of a transmission-type circular polariscope for photoelastic stress measurement." J. Korean Soc. Precision Eng., Vol. 21, No. 3, pp. 38-43 (in Korean).
  3. Budwig, R. (1994). "Refractive index matching methods for liquid flow investigations." Exp. Fluids, Vol. 17, No. 5, pp. 350-355. https://doi.org/10.1007/BF01874416
  4. Byeon, B.-H., Jung, Y.-H. and Mok, Y.-J. (2012). "Analysis of stress patterns in soil using photoelasticity." KGS Spring Conference 2012, pp. 1724-1733 (in Korean).
  5. Byeon, B.-H., Jung, Y.-H. and Mok, Y.-J. (2012). "Reflective photoelastic measurement of force transmission in geosyntheticsoil interaction." 2012 Spring Geosynthetics Conference, pp. 67-72 (in Korean).
  6. Choi, M.-J. (1992). A study on ultimate bearing capacity of eccentrically loaded footing by model test using carbon rods, Master Thesis, Seoul National University (in Korean).
  7. Da Silva, M. and Rajchenback, J. (2000). "Stress transmission through a model system of cohesionless elastic grains." Nature, Vol. 406, No. 6797, pp. 708-710. https://doi.org/10.1038/35021023
  8. Dally, J. W. and Riley, W. F. (1967). Experimental Stress Analysis, McGraw-Hill, Inc.
  9. Dantu, P. (1957). "Contribution to the mechanical and geometrical study of crushed media." Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering, 12-24 August, Butterworth, London, pp. 144-148.
  10. Dijkstra, J. and Broere, W. (2010). "New method of full-field stress analysis and measurement using photoelasticity." Geotechnical Testing Journal, Vol. 33, No. 6, pp. 469-481
  11. Drescher, A. and de Josselin de Jong, G. (1972). "Photoelastic verification of a mechanical model for the flow of a granular material." J. Mech. Phys. Solids, Vol. 20, No. 5, pp. 337-340. https://doi.org/10.1016/0022-5096(72)90029-4
  12. Drescher, A. (1976). "An experimental investigation of flow rules for granular materials using optically sensitive glass particles." Geotechnique, Vol. 26, No. 4, pp. 591-601. https://doi.org/10.1680/geot.1976.26.4.591
  13. Dyer, M. R. (1985). Observation of the stress distribution in crushed glass with applications to soil reinforcement, Ph.D Dissertation, Magdalen College, Oxford.
  14. Howell, D. W., Behringer, R. P. and Veje, C. T. (1999a). "Stress fluctuations in a 2D granular couette experiment: A Continuous Transition." Phys. Rev. Lett., Vol. 82, No. 26, pp. 5241-5244. https://doi.org/10.1103/PhysRevLett.82.5241
  15. Howell, D. W., Behringer, R. P. and Veje, C. T. (1999b). "Fluctuations in granular media." Chaos, Vol. 9, No. 3, pp. 559-572. https://doi.org/10.1063/1.166430
  16. Jung, Y.-H., Byeon, B.-H. and Mok, Y.-J. (2012). "Photoelastic measurement of stress distribution in particle assembly subjected to shallow foundation loading." 2012 KGS Fall National Conference, pp. 342-351 (in Korean).
  17. Jung, Y.-H., Byeon, B.-H. and Mok, Y.-J. (2012). "Photoelastic visualization of stress distribution in particle assembly under elastic and plastic deformations." Proceedings of International Joint Symposium on Urban Geotechnics for Sustainable Development, 2-3 November 2012, Seoul, pp. 123-126.
  18. Kim, S.-S. Mok, Y.-J. and Jung, Y.-H. (2011). "Behavior of dry-stone segmental retaining wall using physical modeling and numerical simulation." J. of the Korean Geotech. Soc., Vol. 27, No. 9, pp. 25-36 (in Korean). https://doi.org/10.7843/kgs.2011.27.9.025
  19. Lesniewska, D. and Sklodowski, M. (2005). "Photoelastic investigation of localization phenomena in granular materials." Proc., Int. Conf. on Powders and Grains, 18-22 July, Stuttgart, Germany, pp. 69-72.
  20. Moon, C.-Y. and Kim, H. D. (2004). "A study of external loads acting on the flexible buried pipe for carbon rod." Korean Geo-Environmental Society 04' Conference, Cheong-Ju, Korea, pp. 305-316 (in Korean).
  21. Rossmanith, H. P. and Shukla, A. (1982). "Photoelastic investigation of dynamic load transfer in granular media." Acta Mech., Vol. 42, No. 3-4, pp. 211-225. https://doi.org/10.1007/BF01177193
  22. Standing, J. R. and Leung, W. Y. M. T. (2006). "Investigating stresses around tunnels and piles using photo-elasticity techniques." Proceedings of the Fifth International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Amsterdam, Netherlands, pp. 171-177.
  23. Thruong, Q. H., Byeon, Y. H., Eom, Y. H., Shim, Y. J. and Lee, J. S. (2009). "Dissolution monitoring of geo-soluble mixture." J. of the Korean Geotech. Soc., Vol. 25, No. 10, pp. 111-122 (in Korean).
  24. Vishay (2012a). LF/Z-2 Reflection Polariscope Instruction Manual.
  25. Vishay (2012b). Introduction to stress analysis by the photostress method, received at May 5, 2012 from http://www.vishaypg. com/docs/11212/11212_tn.pdf.
  26. Vishay (2012c). Photostress Coating Materials and Adhesives, received at May 5, 2012 from http://www.vishaypg.com/docs/ 11222/pscoat.pdf.
  27. Wakabayashi, T. (1958). "Photoelastic method for determining of stress in powdered mass." Proceedings of the Seventh Japanese National Conference on Applied Mechanics, Tokyo, Japan, pp. 153-158 (in Japanese).

Cited by

  1. Investigation of the Change of Soil Arch Structure in Model Particle Assembly Subjected to Displacing Trapdoor via Photoelastic Measurement Technique vol.32, pp.10, 2016, https://doi.org/10.7843/kgs.2016.32.10.31
  2. Evaluation of the Effect of Initial Condition of the Granular Assembly on the Bearing Capacity of the Shallow Foundation using Photoelastic Measurement Technique vol.36, pp.3, 2016, https://doi.org/10.12652/Ksce.2016.36.3.0471