• 제목/요약/키워드: steel truss

검색결과 401건 처리시간 0.022초

영종대교 복층 Warren Truss 해상구간 가설공법 (Erection Method for Marine Section of Double Deck Warren Truss in Young Jong Grand Bridge)

  • 김정웅;서재화;양무석;육일동
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2001년도 학술대회지
    • /
    • pp.232-239
    • /
    • 2001
  • 동북아 지역의 중추 공항 기능을 담당할 인천국제공항의 접근 교통 수단인 영종대교는 총 연장 $4,420{\cal}m$의 연육교로서 주경간부는 10,000ton급 이상의 선박운항이 가능한 세계 최초의 도로 및 철도 병용 복층 자정식 현수교와 접속 구간은 주경간부와의 연속성을 고려하여 복층 Truss교와 강상형교로 구성되어 있다. (주)한진중공업에서는 $2,250{\cal}m$의 복층 Truss 형식 중 해상구간 $1,375{\cal}m$(60,000tons)를 가설하였으며, 본 교량은 상로 6차선 도로, 하로 4차선 도로 및 철도복선으로 구성된 대규모 강교이다. 당초 가설공법은 교각사이에 Temporary Bent를 시공하여 교량을 $75{\cal}m$ 단위의 중블럭으로 제작하여 Floating Crane을 이용하여 가설하는 공법으로 계획되었다. 그러나 본 공법은 10개소 이상의 해상 가벤트를 설치하여 공사를 수행해야 하므로 공사기간이 길어지고 과다한 공사비 소요가 예상되며 해상공사 특성상 고품질 확보가 불확실하였다. 그러므로 당사에서는 $120{\cal}m$ 대블럭 Truss 교량을 일괄 육상/해상운송 및 육상과 동일한 조건에서 설치할 수 있는 공법을 개발함으로써 공사기간을 단축하고 현장 이음개소를 줄여 고품질을 확보함과 아울러 경제적인 공사수행이 가능했다. 본고에서는 영종대교 가설공사 수행을 위해 개발 적용한 운송 및 설치공법에 관한 기술자료를 소개함으로서 국내 교량가설 기술발전에 일조 하고자 한다.

  • PDF

Experimental studies into a new type of hybrid outrigger system with metal dampers

  • Wang, A.J.
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.183-194
    • /
    • 2017
  • This paper presents the experimental investigation into a new type of steel-concrete hybrid outrigger system developed for the high-rise building structure. The steel truss is embedded into the reinforced concrete outrigger wall, and both the steel truss and concrete outrigger wall work compositely to enhance the overall structural performance of the tower structures under extreme loads. Meanwhile, metal dampers of low-yield steel material were also adopted as a 'fuse' device between the hybrid outrigger and the column. The damper is engineered to be 'scarified' and yielded first under moderate to severe earthquakes in order to protect the structural integrity of important structural components of the hybrid outrigger system. As such, not brittle failure is likely to happen due to the severe cracking in the concrete outrigger wall. A comprehensive experimental research program was conducted into the structural performance of this new type of hybrid outrigger system. Studies on both the key component and overall system tests were conducted, which reveal the detailed structural response under various levels of applied static and cyclic loads. It was demonstrated that both the steel bracing and concrete outrigger wall are able to work compositely with the low-yield steel damper and exhibits both good load carrying capacities and energy dispersing performance through the test program. It has the potential to be applied and enhance the overall structural performance of the high-rise structures over 300 m under extreme levels of loads.

Experimental Test on the Effect of Onsite Welding of Steel Plates for a Joint Between Concrete Columns and a Steel Belt Truss

  • Shim, Hak Bo;Yun, Da Yo;Park, Hyo Seon
    • 국제초고층학회논문집
    • /
    • 제9권2호
    • /
    • pp.155-166
    • /
    • 2020
  • To connect exterior reinforced concrete (RC) columns with the steel belt truss, the gusset plates are welded to the steel plates embedded in the RC column. Then, the concrete around an embedded plate is very likely to be damaged by the heat input from a long-time (6 to 48 hours) welding of the embedded and gusset plates at a joint between RC columns and steel belt truss. However, very few studies have assessed the concrete damage caused by the welding heat between embedded and gusset plates, and no clear onsite solution has been found. In this paper, experimental tests have been carried out on 4 full-scale specimen to analyze the effect of long-time (about 6 hours) onsite welding (1-side welding and 3-side welding) between a gusset plate and an embedded plate in high strength concrete with compressive strength of 55 MPa and 80 MPa on RC columns. The effect of the long-time welding heat of embedded and gusset plates, which are used in real high-rise building construction sites, on concrete is analyzed in terms of the following three items: 1) temperature distribution, 2) pattern and characteristics of cracks, and 3) effect of the cracks on the compressive strength of RC column. Based on the experimental results, even though the heat input up to about 150? from the long-time onsite welding on the high-strength concrete column for the joint could result in concrete cracks in a radial form, it is found that the welding cracks have no effect on the axial stiffness and strength of the concrete column.

강재 트러스교의 해석에 의한 피로설계기준 비교 및 검토 (Comparison and Review of Fatigue Design Criteria by the Structural Analysis of Steel Truss Bridges)

  • 김상석;정희영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.241-249
    • /
    • 2003
  • 강교의 구조적 거동은 강도 및 사용성이 충족되고, 피로안전성이 확보될 때 공용수명을 충분히 확신할 수 있다. 그러나, 현재 교량의 피로에 관한 연구들은 상당히 부족하여 이 분야에 대한 지속적인 연구가 절실히 요구된다. 본 연구는 강교의 장기적인 피로안전성을 확보하기 위해서 실무에 적합한 피로설계지침의 방향을 제시함을 목표로 수행되었다. 연속된 강재 트러스교에 실교통량의 누적빈도수를 적용시켜 분석한 결과, 국내의 피로설계규정은 응력범위와 피로강도가 국외의 주요 설계기준에 비하여 과대평가 되는 것으로 나타난다. 따라서, 향후 국내의 피로설계지침에서는 피로설계조항들이 피로설계에 합리적으로 규정되는 것이 필요하다.

PSC 바닥판의 뚫림전단강도 예측을 위한 단순트러스모델 개선 연구 (A Study on the Modified Simple Truss Model to Predict the Punching Shear Strength of PSC Deck Slabs)

  • 박우진;황훈희
    • 한국안전학회지
    • /
    • 제30권5호
    • /
    • pp.67-73
    • /
    • 2015
  • In this paper, the simple truss model was modified to predict the punching shear strength of long-span prestressed concrete (PSC) deck slabs under wheel load including the effects of transverse prestressing and long span length between girders. The strength of the compressive zone arounding punching cone was evaluated by the stiffness of inclined strut which was modified by considering aging effective modulus. The stiffness of springs which control lateral displacement of the roller supports consists of the steel reinforcement and prestressing which passed through the punching cone. Initial angle of struts was determined by the experimental observation to compensate for uncertainties in the complexities of the punching shear. The validity of computed punching shear strength by modified simple truss model was shown by comparing with experimental results and the experimental results were also compared with existing punching shear equations to determine level of predictability. The modified simple truss model appeared to better predict the punching shear strength of PSC deck slabs than other available equations. The punching shear strength, which was determined by snap-through critical load of modified simple truss model, can be used effectively to examine punching shear strength of long span PSC deck slabs.

트러스 벽면과 미세격자 트러스로 구성된 정육면체 단위모델의 강성 및 강도 개발 (Development of Effective Stiffness and Effective Strength for a Truss-Wall Rectangular model combined with Micro-Lattice Truss)

  • 최정호
    • 한국산업융합학회 논문집
    • /
    • 제19권3호
    • /
    • pp.133-143
    • /
    • 2016
  • The objective in here is to find the density, stiffness, and strength of truss-wall rectangular (TWR) model which is combined with lattice truss (MLT) inside space. The TWR unit-cell model is defined as a unit cell originated from a solid-wall rectangular (SWR) model and it has an empty space inside. Thus, the empty space inside of the TWR is filled with lattice truss model defined as TWR-MLT. The ideal solutions derived of TWR-MLT are based on TWR with MLT model and it has developed by Gibson-Ashby's theory. To validate the ideal solutions of the TWR-MLT, ABAQUS software is applied to predict the density, strength, and stiffness, and then each of them are compared with the Gibson-Ashby's ideal solution as a log-log scale. Applied material property is stainless steel 304 because of cost effectiveness and easy to get around. For the analysis, SWR and TWR-MLT models are 1mm, 2mm, and 3mm truss diameter separately within a fixed 20mm opening width. In conclusion, the relative Young's modulus and relative yield strength of the TWR-MLT unit model is reasonably matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, TWR-MLT model can be verified by advanced technologies such as 3D printing skills.t.

트러스를 기반으로 형성된 H-벌집형 샌드위치 심재 모델의 해석적 연구 (Analytical Study of H-Honeycomb Sandwich Core Structure Model based on Truss)

  • 최정호
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.133-140
    • /
    • 2017
  • This paper is a study of the central structural unit model of the sandwich core structure. The applied model is based on the honeycomb structure formed by the truss, the H-shaped honeycomb structure formed by adding the truss of H shape to the space of the center portion, and the honeycomb structure formed by the plate. Applied material property is AISI 304 stainless steel, which has cost effectiveness and easy to get near place. The truss diameter of the model is three different type: 1mm, 2mm and 3mm. ABAQUS software is obtained to do the analysis and applied test is quasi-static loading. Boundary conditions for the analysis are that vertical direction loading at top place without any rotation and bottom surface is fixed. The test results show that the H-truss model has the highest stiffness and yield strength. Therefore, it is hoped that more and more researching for the development of a unit model in sandwich core structure has been investigating and that the developed sandwich core model can be applied into various industrial fields such as mechanical or aerospace industries.

철근콘크리트 보의 스터럽응력 (Stirrup Stress in Reinforced Concrete Beams)

  • 김주영;박경호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.585-590
    • /
    • 1999
  • There is still a lack of knowledge and modelling relating to shear behaviour in reinforced concrete beams. The reason is that shear loading leads to complicated physical mecanisms, such as interlock action, dowel action, etc. Therefore, It is difficult that we make the ideal model of shear behaviour, while Truss model theory has been made good use of shear design because of simplicity and reasonableness. In this study, 6 T-type reinforced concrete beams were designed and made based on the two truss models, i.e, the plasticity truss model and the compatibility truss model, to observe shear strength of concrete and stress distribution of stirrups. 6 beams test pieces were tested with the following testing parameters. 1) specified concrete strength ; 270kg/$\textrm{cm}^2$, 400kg/$\textrm{cm}^2$ 2) with and without the steel fiber.

  • PDF

Using Echolocation Search Algorithm (ESA) for truss size optimization

  • Nobahari, Mehdi;Ghabdiyan, Nafise
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.855-864
    • /
    • 2022
  • Due to limited resources, and increasing speed of development, the optimal use of available resources has become the most important challenge of human societies. In the last few decades, many researchers have focused their research on solving various optimization problems, providing new optimization methods, and improving the performance of existing optimization methods. Echolocation Search Algorithm (ESA) is an evolutionary optimization algorithm that is based on mimicking the mechanism of the animals such as bats, dolphins, oilbirds, etc in food finding to solve optimization problems. In this paper, the ability of ESA for solving truss size optimization problems with continuous variables is investigated. To examine the efficiency of ESA, three benchmark examples are considered. The numerical results exhibit the effectiveness of ESA for solving truss optimization problems.

변환각 트러스 모델에 의한 축력을 받는 철근콘크리트 부재의 전단강도 예측 (Shear Strength Prediction of Reinforced Concrete Members Subjected In Axial force using Transformation Angle Truss Model)

  • 김상우;이정윤
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.813-822
    • /
    • 2004
  • 축하중을 받는 철근콘크리트 부재의 전단강도를 예측하기 위하여, 본 연구에서는 전단력과 축하중 및 휨모멘트를 받는 철근 콘크리트 부재의 전단거동을 예측할 수 있는 변환각 트러스 모델(TATM)을 제안하였다. TATM에서, 축력의 영향을 고려하기 위하여 축압축력이 증가할수록 고정각은 감소하며 균열 방향의 콘크리트 전단저항은 증가한다. TATM의 예측결과가 축력을 받는 철근콘크리트 부재에 대하여 정확성과 신뢰성을 가지는지 검증하기 위하여, 축력을 받는 총 67개의 전단실험 결과를 수집하였으며, TATM 및 기존의 트러스 모델(MCFT, RA-STM FA-STM)과 비교하였다. 수집한 실험결과와 해석결과를 비교한 결과, TATM에 의한 해석결과는 실험결과를 평균 0.95, 변동계수 $12.0\%$로 기존의 트러스 모델보다 더 정확히 예측하였으며, 철근능력비, 축력, 전단경간비 및 압축철근비의 영향을 받지 않았다.