• 제목/요약/키워드: steel special moment frames

검색결과 70건 처리시간 0.025초

Seismic evaluation of vertically irregular building frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities

  • Nezhad, Moosa Ebrahimi;Poursha, Mehdi
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.353-373
    • /
    • 2015
  • In this paper, the effects of different types of irregularity along the height on the seismic responses of moment resisting frames are investigated using nonlinear dynamic analysis. Furthermore, the applicability of consecutive modal pushover (CMP) procedure for computing the seismic demands of vertically irregular frames is studied and the advantages and limitations of the procedure are elaborated. For this purpose, a special moment resisting steel frame of 10-storey height was selected as reference regular frame for which the effect of higher modes is important. Forty vertically irregular frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities are created by applying two modification factors (MF=2 and 4) in four different locations along the height of the reference frame. Seismic demands of irregular frames are computed by using the nonlinear response history analysis (NL-RHA) and CMP procedure. Modal pushover analysis (MPA) method is also carried out for the sake of comparison. The effect of different types of irregularity along the height on the seismic demands of vertically irregular frames is investigated by studying the results obtained from the NL-RHA. To demonstrate the accuracy of the enhanced pushover analysis methods, the results derived from the CMP and MPA are compared with those obtained by benchmark solution, i.e., NL-RHA. The results show that the CMP and MPA methods can accurately compute the seismic demands of vertically irregular buildings. The methods may be, however, less accurate especially in estimating plastic hinge rotations for weak or weak-and-soft top and middle storeys of vertically irregular frames.

Lateral performance of CRCS connections with tube plate

  • Jafari, Rahman;Attari, Nader K.A.;Nikkhoo, Ali;Alizadeh, Saeid
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.37-57
    • /
    • 2019
  • This paper presents experimental and analytical studies to evaluate the cyclic behaviour of Circular Reinforced Concrete column Steel beam (CRCS) connections. Two 3/4-scale CRCS specimens are tested under quasi-static reversed cyclic loading. Specimens were strengthened with a tube plate (TP) and a steel doubler plate (SDP). Furthermore; nine interior beam-through type RCS connections are simulated using nonlinear three-dimensional finite element method using ABAQUS software and are verified with experimental results. The results revealed that using the TP improves the performance of the panel zone by providing better confinement to the concrete. Utilizing the TP at the panel zone may absorb and distribute stress in this region. Results demonstrate that TP can be used instead of SDP. Test records indicate that specimens with TP, with and without SDP maintained their maximum strength up to 4% drift angle, satisfying the recommendation given by AISC341-2016 for composite special moment-resisting frames.

깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발 (Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame)

  • 정시화;알미아이유 로벨 원디므;박만우;주영규
    • 대한건축학회논문집:구조계
    • /
    • 제35권4호
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

천장 브래킷형 모듈러 시스템의 브래킷 길이와 볼트에 따른 내진성능평가 (Seismic Performance Evaluation of the Ceiling Bracket-type Modular System with Various Bracket Lengths and Bolt Types)

  • 곽의신;강창훈;손수덕;이승재
    • 대한건축학회논문집:구조계
    • /
    • 제34권4호
    • /
    • pp.25-33
    • /
    • 2018
  • In regard to modular systems, new methods, as well as middle and high-story unit design ideas, are currently being studied. These studies need to focus on the enhanced stiffness and seismic performance of these connections, and see that the development of fully restrained moment connections can improve the seismic performance. For this reason, this study evaluates the performance of the connections of the ceiling bracket-typed modular system through repeated loading tests and analyses. In order to compare them with these modular units, new unit specimens with the bracket connection being different from that of the traditional modular unit specimens were designed, and the results of repeated loading tests were analyzed. In the traditional units, the structural performances of both welding connection and bolt connection were evaluated. In regard to the testing results, the initial stiffness of the hysteresis curve was compared with the theoretical initial stiffness, and the features of all specimens were also analyzed with regard to the maximum moment. In addition, the test results were examined with regard to the connection flexural strength of the steel special moment frame specified under the construction criteria KBC2016. The connections, which were proposed in the test results, were found to be fully restrained moment connections for designing strong column-weak beams and meeting the requirements of seismic performance of special moment frames.

웨브를 볼트로 접합한 보 플랜지 절취형(RBS) 철골모멘트접합부의 내진설계 및 성능평가 (Seismic Design and Testing of Reduced Beam Section Steel Moment Connections with Bolted Web Attachment)

  • 이철호;김재훈
    • 한국강구조학회 논문집
    • /
    • 제17권6호통권79호
    • /
    • pp.689-697
    • /
    • 2005
  • 보 플랜지 절취형 (Reduced Beam Section, RBS) 내진 철골모멘트접합부의 최근 실험결과를 살펴보면, 보 웨브를 볼트 접합한 시험체는 보 웨브를 용접한 시험체에 비해 조기에 스캘럽에서 취성파단이 발생하는 열등한 내진성능을 나타냈다. 과거 여러 연구자들이 수행한 실험 결과 및 본 연구의 수치해석 결과를 종합해 볼 때, 이러한 접합부의 조기 취성파괴는 고전 휨이론과 매우 다른 응력전달 메카니즘에서 기인하는 웨브 볼트의 슬립, 그리고 재료의 인성이 가장 낮은 스캘럽 부근의 응력집중과 밀접한 관련이 있는 것으로 분석된다. 본 연구에서는 실험 및 해석결과를 바탕으로 RBS 접합부의 실제 응력전달경로에 부합되는 새로운 보 웨브 볼트 설계법 및 개선된 상세를 제시하고 실물대 실험을 통하여 방안의 타당성을 입증하였다.

Evaluation of Three Support Shapes on Behavior of New Bolted Connection BBCC in Modularized Prefabricated Steel Structures

  • Naserabad, Alifazl Azizi;Ghasemi, Mohammad Reza;Shabakhty, Naser;Arab, Hammed Ghohani
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1639-1653
    • /
    • 2018
  • Bolted connections are suitable due to high quality prefabrication in the factory and erection in the workplace. Prefabrication and modularization cause high speed of erection and fabrication, high quality and quick return of investment. Their technical hitches transportation can be removed by prefabrication of joints and small fabrication of components. Box-columns are suitable members for bolted structures such as welded steel structures with moment frames in two directions etc., but their continual fabrication in multi-story buildings and performing the internal continuity plate in them will cause some practical dilemmas. The details of the proposal technique introduced here, is to remove such problems from the box columns. Besides, some other advantages include new prefabricated bolted beam-to-column connections referred to BBCC. This connection is a set of plates joined to columns, beams, support, and bolts. For a better understanding of its fabrication and erection techniques, two connection and one structural maquettes are made. The present work aims to study the cyclic behavior of connection numerically. To verify the accuracy of model, a similar tested connection was modelled. Its verification was then made through comparison with test results. The behavior of connection was evaluated for an exterior connection using three different support shapes. The effects of support shapes on rigidity, ductility, rotation capacity, maximum strength, four rad rotation strength were compared to those of the AISC seismic provision requirements. It was found that single beams support has all the AISC seismic provision requirements for special moment frames with and without a continuity plate, and box with continuity plate is the best support in the BBCC connection.

Seismic behavior of special moment-resisting frames with energy dissipating devices under near source ground motions

  • Bayat, Mahmoud;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • 제16권5호
    • /
    • pp.533-557
    • /
    • 2014
  • In this study, the performances of the SMRF building equipped with energy dissipating devices are studied. Three types of these structures with different heights are considered. The Added Damping and Stiffness (ADAS) devices are used as energy dissipating devices in these structures. The behavior of these structures with ADAS devices subjected to near source ground motions are investigated. Three SMRF buildings with five, ten and fifteen-story, with ADAS devices were chosen. The nonlinear time history analysis was used by applying the near source ground motions with PERFORM 3D.V4 and conclusions are drawn upon an energy criterion. The effect of PGA variation and height of the frames are also considered based on the energy criterion.

비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발 (Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development)

  • 이경구
    • 한국강구조학회 논문집
    • /
    • 제20권5호
    • /
    • pp.617-624
    • /
    • 2008
  • 잘 설계된 철골 모멘트 접합부의 경우, 유효회전능력에 도달하기 전에 국부좌굴이 발생하고 비탄성 후좌굴 변형이 접합부 회전능력을 정의하는데 중대한 역할을 한다. 이 연구에서는 국부좌굴로 인한 강도저하와 보 소성힌지의 회전을 모델링하여, 단조증가하중 및 반복하중이 작 용하는 특별철골모멘트골조의 강접합 보-기둥 접합부의 회전능력을 예측하기 위한 근사적 해석모델을 제안한다. 제안된 항복선 소성힌지 모델은 좌굴된 소성힌지부의 형상에 기초하여 항복선과 소성존으로 구성되고, 소성메커니즘을 통해 국부좌굴후의 거동까지 포함한 모멘트-회전각 관계를 제 공한다. 향상된 WUF-W 와 RBS 접합부를 위해 제안된 모델을 개발한 후 실험결과와 비교를 통해 검증하였다. 동반논문(변수연구)에서는 광범위 한 H-형강의 기하학적 변수 따른 접합부 회전능력에 대하여 논의하였다.

Numerical evaluating for the rigid and semi-rigid connection of I-Shaped beams to tubular columns

  • Shohreh Sohaei;Mehrzad TahamouliRoudsari;Parham Memarzadeh
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.305-323
    • /
    • 2024
  • Previous experimental studies have effectively demonstrated the remarkable efficiency of the stiffened channel link in connecting circular columns and I-shaped beams. This research aims to present design criteria and assess the seismic properties of this specific connection type through numerical modeling. Various parameters, including stiffener type and geometric properties of the stiffened channel element, were duly taken into account. The findings from over 136 nonlinear finite element analyses (FEAs) reveal that the recommended detailing scheme reliably satisfies all the regulations specified for rigid beam-to-column connections in special moment frames.

비탄성 국부좌굴을 고려한 철골 모멘트 접합부의 회전능력에 대한 변수 연구 (Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Parametric Studies)

  • 이경구
    • 한국강구조학회 논문집
    • /
    • 제20권5호
    • /
    • pp.625-632
    • /
    • 2008
  • 동반논문(모델개발)에서는 특별철골모멘트골조의 강접합 보-기둥 접합부의 회전능력을 예측하기 위한 해석모델을 제안하였다. 본 논문에서는 접합부 회전능력 기준으로 두 개의 극한상태를 고려하였다. 첫째, 보 단면의 국부좌굴로 인해 공칭소성강도까지 강도저하가 발생하였을 때를 회전능력으로 보는 강도저하 극한상태를 고려하였다. 둘째, 큰 진폭의 변형이 몇 번 반복 후에 좌굴된 플랜지에서 소성변형률 축적으로 야기 되는 저주기 피로 파단을 극한상태로 고려하였다. 두 극한상태까지 제안한 모델을 이용하여 단조증가하중 및 반복하중하에 일련의 해석을 수행하였다. 실무설계에서 사용되는 범위안의 다양한 H-형강 보를 모델링한 후, 플랜지 및 웨브 폭-두께비와 같은 보 단면의 기하학적 변수가 WUF-W 접합부의 회전능력과 저주기 피로수명에 미치는 영향을 관찰하였다.