• Title/Summary/Keyword: steel retaining wall

Search Result 58, Processing Time 0.021 seconds

Performance of retaining walls with and without sound wall under seismic loads

  • Mock, Erin;Cheng, Lijuan
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.909-935
    • /
    • 2014
  • The seismic characteristics of two semi-gravity reinforced concrete cantilever retaining walls are examined via an experimental program using an outdoor shake table (one with and the other without concrete masonry sound wall on top). Both walls are backfilled with compacted soil and supported on flexible foundation in a steel soil container. The primary damages during both tests are associated with significant lateral displacements of the wall caused by lateral earth pressure; however, no collapse occurs during the tests. The pressure distribution behind the walls has a nonlinear trend and conventional methods such as Mononobe-Okabe are insufficient for accurate pressure estimation.

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim;Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.763-783
    • /
    • 2016
  • A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

Intelligent design of retaining wall structures under dynamic conditions

  • Yang, Haiqing;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Gordan, Behrouz;Khorami, Majid;Tahir, M.M.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.629-640
    • /
    • 2019
  • The investigation of retaining wall structures behavior under dynamic loads is considered as one of important parts for designing such structures. Generally, the performance of these structures is under the influence of the environment conditions and their geometry. The aim of this research is to design retaining wall structures based on smart and optimal systems. The use of accuracy and speed to assess the structures under different conditions is one of the important parts sought by designers. Therefore, optimal and smart systems are able to have better addressing these problems. Using numerical and coding methods, this research investigates the retaining wall structure design under different dynamic conditions. More than 9500 models were constructed and considered for modelling design. These designs include height and thickness of the wall, soil density, rock density, soil friction angle, and peak ground acceleration (PGA) variables. Accordingly, a neural network system was developed to establish an appropriate relationship between data to obtain safety factor (SF) of retaining walls under different seismic conditions. Different parameters were analyzed and the effect of each parameter was assessed separately. According to these analyses, the structure optimization was performed to increase the SF values. The optimal and smart design showed that under different PGA conditions, the structure performance can be appropriately improved while utilization of the initial (or basic) parameters leads to the structure failure. Therefore, by increasing accuracy and speed, smart methods could improve the retaining structure performance in controlling the wall failure. The intelligent design process of this study can be applied to some other civil engineering applications such as slope stability.

Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.463-476
    • /
    • 2021
  • The concept of using Steel-concrete (SC) composite walls as retaining walls has recently been introduced by the authors and their effectiveness of resisting out-of-plane loads has also been demonstrated. In this paper, an improved analytical formulation based on partial interaction theory, which has previously been developed by the authors, is presented. The improved formulation considers a new loading condition and also accounts for cracking in concrete to simulate the real conditions. Due to a limited number of test specimens, further finite element (FE)simulations are performed in order to verify the analytical procedure in more detail. It is observed that the results from the improved analytical procedure are in excellent agreement with both experimental and numerical results. Moreover, a detailed parametric study is conducted using the developed FE model to investigate effects of different parameters, such as distance between shear connectors, shear connector length, concrete strength, steel plate thickness, concrete cover thickness, wall's width to thickness ratio, and wall's height to thickness ratio, on the behavior of SC composite walls subjected to out-of-plane loads.

In-Situ Behaviors of Steel Frame-type Retaining Walls (조립식 강재틀 옹벽의 현장적응성 분석)

  • 박종배;임해식;박용부;나승민;정형식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.93-101
    • /
    • 2003
  • Steel frame-type retaining walls(SFRW) are constructed by on site bolting of prefabricated steel frames and internal filling of materials such as rocks with the size of 150-300mm. Easy & fast construction, superior drainage performance and structural performance to rigorous site conditions are some of the merits of applying the SFRW to various construction sites. After the development of the structural details, a test construction of SFRW, with the height of 6m and 30m in length, was carried out at an apartment site. After completion, several months of monitoring was carried out on the structure to check displacement, tilting, settlement, soil pressures and drainage characteristics. The results of the structural behavior of SFRW along with its construction methods are presented in the paper.

  • PDF

Analysis of Stress and Strain for Steel Sheet Pile Bridge Abutment (강널말뚝 교대의 응력 및 변형 해석)

  • Chung, Ha-Ik;You, Jun;Oh, In-Kyu;Eun, Seong-Woon;Son, In-Goon;Lee, Sung-Yeol;Kim, Hyung-Koo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.561-564
    • /
    • 2004
  • Steel sheet pile can be alternative material for bridge abutment for. The steel sheet pile bridge abutment is new and replacement bridge abutment due to its aesthetically attractive and cost effective. Use of embedded steel sheet piling brings savings in dead load, provides a compliant retaining wall, and permits speedier construction. In addition, for replacement bridge projects, traffic interruption can be minimized. It is hoped that this study will encourage designers and constructors to consider a steel substructure option more frequently during the conceptual and preliminary design phases of projects and thereby to take advantage of the potential to construction more efficiently. In this paper, an analysis of stress and strain for steel sheet pile bridge abutment was conducted. From the analysis results, the stress and strain characteristics of steel sheet pile bridge abutment with variations of steel sheet pile parameters is suggested.

  • PDF

A Case Study on the Hybrid Reinforcement Retaining Wall System Reinforced by Soil Nail and Steel Strip (쏘일네일과 강재스트립으로 보강된 복합보강토옹벽 시스템의 사례연구)

  • Chun, Byung-Sik;Kim, Hong-Taek;Cho, Hyun-Soo;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.5-12
    • /
    • 2008
  • The reinforced earth wall, which is able to improve the strength of soil highly, is required in case of supporting high surcharge load such as high speed rail way, high embankment road, and massive reinforced earth wall in a mountainous area. And also, it is continuously required that the method is able to minimize the amount of excavated soil on account of environmental issue, boundary of land, etc., on excavation site. However, because the required length of reinforcement should be $60{\sim}80%$ of the height of reinforced earth wall for general reinforced earth wall, in fact the reinforced earth wall is hardly applied on the site of cut slope. In this paper we studied the design and construction cases of hybrid reinforcement retaining wall system combined with steel strips and soil nails, connecting the reinforced earth wall reinforcements to the slope stability reinforcements (soil nails) to ensure sufficient resistance by means of reducing the length of reinforcements of reinforced earth wall. And the feasibility of hybrid reinforcement retaining wall system, suggested by real data measured on site, is also discussed.

A Case study of steel sheet pile (강널말뚝을 이용한 국내.외 시공 사례)

  • 여병철;김광일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.111-118
    • /
    • 1994
  • The use of steel sheet pile walls as barrier walls have the temporary for coffer dam, retaining wall in excavation, etc., but also permanent of semi-permanent for harbor construction, containment systems, vertical barrier systems for waste disposal (landfill) or subway in excavarion. In all these applicaions the resistance of the structure to seepage plays an important role. Also the stability and longevity of the construction, the possibility of permanent control and survey make the steel sheet pile wall a nearly perfect vertical barrier from a technical and economical point of view.

  • PDF

Behavior Analysis of Earth Retaining Wall with S.G.P method (강판을 사용한 흙막이 벽체공법(SGP) 거동분석)

  • Cho, Seong-Ha;Choi, Gwan-Woo;You, Kwong-Ho;Kim, Sung-Duk;Kim, Young-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1269-1277
    • /
    • 2008
  • In this study, the behavior of retaining wall composed with soldier pile and steel plate is analysed. The steel guided plate(SGP) method is applied to the site near the riverside in which geotechnical condition results in flood and large deformation. Following the concept of preventing infiltration from huge permeability stratum and decreasing deformation with strengthened stiffness simultaneously, this method is discussed its effectiveness with the instrumentation data. Also the differences of behavior between predicted and detected are investigated with numerical methods. It is found that SGP has a good deal of advantages with regard to balancing between control of permeability and deformation. In addition, it is revealed that SGP can give resonable construction plan for sustaining stiffness for which the sheetpiling method cannot be adopted effectively in waterfront condition.

  • PDF

Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization

  • Khajehzadeh, Mohammad;Kalhor, Amir;Tehrani, Mehran Soltani;Jebeli, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.93-102
    • /
    • 2022
  • The optimum design of reinforced concrete cantilever retaining walls subjected to seismic loads is an extremely important challenge in structural and geotechnical engineering, especially in seismic zones. This study proposes an adaptive sperm swarm optimization algorithm (ASSO) for economic design of retaining structure under static and seismic loading. The proposed ASSO algorithm utilizes a time-varying velocity damping factor to provide a fine balance between the explorative and exploitative behavior of the original method. In addition, the new method considers a reasonable velocity limitation to avoid the divergence of the sperm movement. The proposed algorithm is benchmarked with a set of test functions and the results are compared with the standard sperm swarm optimization (SSO) and some other robust metaheuristic from the literature. For seismic optimization of retaining structures, Mononobe-Okabe method is employed for dynamic loading conditions and total construction cost of the structure is considered as the single objective function. The optimization constraints include both geotechnical and structural restrictions and the design variables are the geometrical dimensions of the wall and the amount of steel reinforcement. Finally, optimization of two benchmark retaining structures under static and seismic loads using the ASSO algorithm is presented. According to the numerical results, the ASSO may provide better optimal solutions, and the designs obtained by ASSO have a lower cost by up to 20% compared with some other methods from the literature.