• Title/Summary/Keyword: steel plates

Search Result 1,484, Processing Time 0.026 seconds

A Study on the Protection of the Bare and Painted Steel Plates (아연 양극에 의한 도장강판과 나강판의 방식 연구)

  • 문경만;김종신;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.55-65
    • /
    • 1993
  • Galvanic protection method is one the cathodic protection methods and is mostly used for corrosion prevention of heat exchangers and ship's hull. In this paper, it was investigated that how cathodic potential distribution was varied with according to the bare and painted steel plates in case of galvanic anode protection. The results obtained above were as follows. 1. Cathodic potential distribution of a painted steel plate was smoothed than that of the bare steel plate all over the cathodic surface area. 2. It was shown that polarization potential of the bare steel plate was somewhat shifted to negative potential, on the contrary that of the painted steel plate was somewhat shifted from negative potential to positive potential as time gone by beginning of galvanic anode method. 3. The applied current density in order to maintain constant protection potential(-770mv SCE) in the painted steel plate was less than that of the bare steel plate because of the high resistance polarization of the painted steel plate. 4. It was suggested that required number and life-time of anode for galvanic anode protection could be decided easily with corrosion prevention coefficient obtained by experimental data.

  • PDF

A Study on the Durability of a Wedge for Transportation of Rolled Steel Plates Using FEM (유한요소법을 이용한 권취강판 적재운송용 Wedge의 내구성에 관한 연구)

  • Kwac, Lee-Ku;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.328-335
    • /
    • 2009
  • In order to 1ransport the steel roll coil effectively and safely to the destination, the stability of the steel roll coil which induced the minimum movements during the 1ransportation was s1rongly required. The basic 1ransportation equipment for the steel roll coil such as the wedge is made of 100% imported wood known as the apitong. However, the material characteristic such as the rigidity has caused permanent damages to the steel roll coil and the damaged steel roll coils were not easily restorable. Thus it was unsuitable for other purposes. The introduction of new materials to manufacturing wedges which would have a good recovery performance and thus enable the wedge prevention or reduction to the steel roll coil or any other products during the 1ransportation is needed. Due to the fact that recovering damage of the coil is almost impossible, we have to find the new type of wedge that can substitute the apitong wedge. Therefore, we are going to develop a wedge that does not damage rolled steel coil and has better recovery and softness than existing apitong wedge.

  • PDF

Prediction of Bonding Failure Load of RC Beams Strengthened by Externally Bonded Steel Plates (강판으로 보강된 RC보의 부착파괴하중 예측)

  • 박윤재;신동혁;이광명;신현목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.729-732
    • /
    • 1999
  • In this paper, the Mohr-Coulomb criterion was adopted to predict the bonding failure load of the reinforced concrete beams strengthened by the externally bonded steel plates. Based on this criterion, a nonlinear analysis program of APSB(Analysis Program for Strengthened Beams) and nonlinear finite element analysis program of RCSD-SB (Reinforced Concrete Structural Design - Strengthened Beams) were developed. Numerical results were then compared with experimental results and good agreements were obtained.

  • PDF

Strengthening and Ductility Evaluation of Reinforced Concrete Beams Shear-Strengthened by Steel Plates and Glass Fiber Sheets (강판 및 유리섬유쉬트로 전단보강된 철근콘크리트 보의 보강 및 연성 평가)

  • 문상범;오성영;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.691-696
    • /
    • 2000
  • Shear strengthening method by steel plates and fiber reinforced polymer lamination has recently been favorably selected due to its efficiencies of duration and performance. Shear failure being brittle and difficult to predict, reinforced concrete structures must have sufficient capacity to absorb the energy for shear failure and to support temporarily the overload which may result due to the loss of shear capacity to the structure. These respects being considered, this research has carried out with the purpose of the experimental verification of the shear strengthening effect and ductility evaluation.

  • PDF

Development of the Automation System in the Plate Warehouse (후판제품창고 자동화 시스템 개발)

  • 박영환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.220-226
    • /
    • 1999
  • In automatization of a warehouse for plate products, the selecting control of the number of steel plates to be lifted by a lifting magnet crane and the roller table control of steel plates being transported on are indispensible key technolgies. POSCO had developed these elementary technologies for the product warehouse of the plate mill in Pohang Works and succeeded in making the operation of the large-scale warehouse for plate products.

  • PDF

A study on the langevin type vibrators (란쥬반형진동자에 관한 연구)

  • 박정엽;한득영;박태곤
    • 전기의세계
    • /
    • v.30 no.1
    • /
    • pp.47-54
    • /
    • 1981
  • The fabrication of Langevin type vibrators producing relatively high sonic and ultrasonic energy is described. The dependence of the acoustic output and the frequency characteristics on the thickness of the steel plates and the pressure at the ceramics are investigated. As results, the acoustic output of Langevin type vibrators are relatively high, and the resonant frequency is decreassed by thickening the steel plates and lowering the pressure at the ceramics. Using these results, sonic and ultrasonic vibrator whose resonant frequency is determined can be designed.

  • PDF

Buckling and vibration of symmetric laminated composite plates with edges elastically restrained

  • Ashour, Ahmed S.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.439-450
    • /
    • 2003
  • The finite strip transition matrix technique, a semi analytical method, is employed to obtain the buckling loads and the natural frequencies of symmetric cross-ply laminated composite plates with edges elastically restrained against both translation and rotation. To illustrate the accuracy and the validation of the method several example of cross play laminated composite plates were analyzed. The buckling loads and the frequency parameters are presented and compared with available results in the literature. The convergence study and the excellent agreement with known results show the reliability of the purposed technique.

Experimental Study for Structural Behavior of Embed Plate into Concrete Subjected to Welding Heat Input (매입강판 용접열에 의한 고강도 콘크리트 접합부 구조성능 영향평가에 관한 실험적 연구)

  • Chung, Kyung Soo;Kim, Ki Myon;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.569-578
    • /
    • 2013
  • In a super-tall building construction, thick and large-sized embed plates are usually used to connect mega structural steel members to RC core wall or columns by welding a gusset plate on the face of the embed plate with T-shape. A large amount of heat input accumulated by weld passes causes the plates to expand or deform. In addition, the temperature of concrete around the plates also could be increased. Consequently, cracks and spalls occur on the concrete surface. In this study, the effect of weld heat on embed plates and 80MPa high strength concrete is investigated by considering weld position (2G and 3G position), edge distance, concrete curing time, etc. Measured temperature of the embed plates was compared with the transient thermal analysis results. Finally, push-out tests were performed to verify and compare the shear studs capacity of the embed plate with design requirement. Test result shows that the shear capacity of the plate is reduced by 14%-19% due to the weld heat effect and increased as the concrete curing time is longer.

Experimental and analytical study on continuous GFRP-concrete decks with steel bars

  • Tong, Zhaojie;Chen, Yiyan;Huang, Qiao;Song, Xiaodong;Luo, Bingqing;Xu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.737-749
    • /
    • 2020
  • A hybrid bridge deck is proposed, which includes steel bars, concrete and glass-fiber-reinforced-polymer (GFRP) plates with channel sections. The steel bar in the negative moment region can increase the flexural stiffness, improve the ductility, and reduce the GFRP ratio. Three continuous decks with different steel bar ratios and a simply supported deck were fabricated and tested to study the mechanical performance. The failure mode, deflection, strain distribution, cracks and support reaction were tested and discussed. The steel bar improves the mechanical performance of continuous decks, and a theoretical method is proposed to predict the deformation and the shear capacity. The experimental results show that all specimens failed with shear failure in the positive moment region. The increase of steel bar ratio in the negative moment region can achieve an enhancement in the flexural stiffness and reduce the deflection without increasing GFRP. Moreover, the continuous deck can achieve a yield load, and the negative moment can be carried by GFRP plates after the steel bar yields. Finally, a nonlinear analytical method for the deflection calculation was proposed and verified, with considering the moment redistribution, non-cracked sections and nonlinearity of material. In addition, a simplified calculation method was proposed to predict the shear capacity of GFRP-concrete decks.

Micro-finite element and analytical investigations of seismic dampers with steel ring plates

  • Rousta, Ali Mohammad;Azandariani, Mojtaba Gorji
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.565-579
    • /
    • 2022
  • This study investigated the yielding capacity and performance of seismic dampers constructed with steel ring plates using numerical and analytical approaches. This study aims to provide an analytical relationship for estimating the yielding capacity and initial stiffness of steel ring dampers. Using plastic analysis and considering the mechanism of plastic hinge formation, a relation has been obtained for estimating the yielding capacity of steel ring dampers. Extensive parametric studies have been carried out using a nonlinear finite element method to examine the accuracy of the obtained analytical relationships. The parametric studies include investigating the influence of the length, thickness, and diameter of the ring of steel ring dampers. To this end, comprehensive verification studies are performed by comparing the numerical predictions with several reported experimental results to demonstrate the numerical method's reliability and accuracy. Comparison is made between the hysteresis curves, and failure modes predicted numerically or obtained/observed experimentally. Good agreement is observed between the numerical simulations and the analytical predictions for the yielding force and initial stiffness. The difference between the numerical models' ultimate tensile and compressive capacities was observed that average of about 22%, which stems from the performance of the ring-dampers in the tensile and compression zones. The results show that the steel ring-dampers are exhibited high energy dissipation capacity and ductility. The ductility parameters for steel ring-damper between values were 7.5 to 4.1.