Browse > Article
http://dx.doi.org/10.12989/sem.2020.76.6.737

Experimental and analytical study on continuous GFRP-concrete decks with steel bars  

Tong, Zhaojie (Shenzhen Municipal Design & Research Institute Co., Ltd.)
Chen, Yiyan (Shenzhen Municipal Design & Research Institute Co., Ltd.)
Huang, Qiao (Department of Bridge Engineering, School of Transportation, Southeast University)
Song, Xiaodong (Department of Bridge Engineering, School of Transportation, Southeast University)
Luo, Bingqing (School of Innovation and Entrepreneurship, Southern University of Science and Technology)
Xu, Xiang (Department of Bridge Engineering, School of Transportation, Southeast University)
Publication Information
Structural Engineering and Mechanics / v.76, no.6, 2020 , pp. 737-749 More about this Journal
Abstract
A hybrid bridge deck is proposed, which includes steel bars, concrete and glass-fiber-reinforced-polymer (GFRP) plates with channel sections. The steel bar in the negative moment region can increase the flexural stiffness, improve the ductility, and reduce the GFRP ratio. Three continuous decks with different steel bar ratios and a simply supported deck were fabricated and tested to study the mechanical performance. The failure mode, deflection, strain distribution, cracks and support reaction were tested and discussed. The steel bar improves the mechanical performance of continuous decks, and a theoretical method is proposed to predict the deformation and the shear capacity. The experimental results show that all specimens failed with shear failure in the positive moment region. The increase of steel bar ratio in the negative moment region can achieve an enhancement in the flexural stiffness and reduce the deflection without increasing GFRP. Moreover, the continuous deck can achieve a yield load, and the negative moment can be carried by GFRP plates after the steel bar yields. Finally, a nonlinear analytical method for the deflection calculation was proposed and verified, with considering the moment redistribution, non-cracked sections and nonlinearity of material. In addition, a simplified calculation method was proposed to predict the shear capacity of GFRP-concrete decks.
Keywords
GFRP-concrete; continuous deck; steel bar; deflection; moment redistribution; shear capacity;
Citations & Related Records
Times Cited By KSCI : 26  (Citation Analysis)
연도 인용수 순위
1 Wang, W.W. and Dai, J.G. (2013), "Self-stressed steel fiber reinforced concrete as negative moment connection for strengthening of multi-span simply-supported girder bridges", Adv. Struct. Eng., 16(6), 1113-1127. http://doi.org/10.1260/1369-4332.16.6.1113   DOI
2 Belbachir, N., Draich, K., Bousahla, A. A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081   DOI
3 Xin, H., Liu, Y., He, J., Fan, H. and Zhang, Y. (2015), "Fatigue behavior of hybrid GFRP-Concrete bridge decks under sagging moment", Steel Compos. Struct., 18(4), 925-946. http://doi.org/10.12989/scs.2015.18.4.925   DOI
4 Yang, Y., Xue, Y., Zhang, T. and Tian, J. (2018), "Structural performance of GFRP-concrete composite beams", Struct. Eng. and Mech., 68(4), 485-495. http://doi.org/10.12989/sem.2018.68.4.485   DOI
5 Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A. A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete., 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489   DOI
6 Akgoz, B. and Civalek O. A (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mech., 226, 2277-2294. http://doi.org/10.1007/s00707-015-1308-4   DOI
7 Alagusundaramoorthy, P., Harik, I.E. and Choo, C.C. (2006), "Structural behavior of FRP composite bridge deck panels", J. Bridge Eng., 11(4), 384-393. http://doi.org/10.1061/(asce)1084-0702(2006)11:4(384)   DOI
8 Cho, J.R., Park, S.Y., Cho, K., Kim, S.T. and Kim, B.S. (2012), "Pull-out test and discrete spring model of fibre-reinforced polymer perfobond rib shear connector", Can. J. Civil. Eng., 39, 1311-1320. http://doi.org/10.1139/cjce-2011-0573   DOI
9 Bourada, F., Bousahla, A. A., Tounsi, A., Bedia, E. A. A., Mahmoud, S. R., Benrahou, K. H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485   DOI
10 Cheng, L. (2011), "Flexural fatigue analysis of a CFRP form reinforced concrete bridge deck", Compos. Struct., 93(11), 2895-2902. http://doi.org/10.1016/j.compstruct.2011.05.014   DOI
11 Cho, K., Park, S.Y., Kim, S.T., Cho, J.R. and Kim, B.S. (2013), "Behavioral characteristics of precast FRP-concrete composite deck subjected to combined axial and flexural loads", Compos. Part B-Eng., 44(1), 679-685. http://doi.org/10.1016/j.compositesb.2012.01.079   DOI
12 Civalek O. (2007), "Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach", Finite Elem. Anal. Des., 43(13), 1013-1022. http://doi.org/10.1016/j.finel.2007.06.014   DOI
13 Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. http://doi.org/10.1016/j.amc.2016.05.034   DOI
14 Dieter, D.A., Dietsche, J.S., Bank, L.C., Oliva, M. and Russell, J. (2002), "Concrete bridge decks constructed with fiberreinforced polymer stay-in-place forms and grid reinforcing", Transp. Res. Rec.: J. Transp. Res. Board, 1814, 219-226.   DOI
15 Banjara, N.K. and Ramanjaneyulu, K. (2019), "Effective CFRP retrofit strategy for flexural deficient RC beams", Struct. Eng. and Mech., 69(2), 163-175. http://doi.org/10.12989/sem.2019.69.2.163   DOI
16 Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A. A. and Mahmoud, S. R. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. https://doi.org/10.12989/sss.2020.25.4.409   DOI
17 Demir, C. and Civalek, O. (2013), "Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models", Appl. Math. Model., 37, 9355-9367. http://doi.org/10.1016/j.apm.2013.04.050   DOI
18 Dezi, L., Gara, F. and Leoni, G. (2006), "Construction sequence modelling of continuous steel-concrete composite bridge decks", Steel Compos. Struct., 6(2), 123-138. http://doi.org/10.12989/scs.2006.6.2.123   DOI
19 Di, J., Cao, L. and Han, J. (2020), "Experimental study on the shear behaviour of GFRP-concrete composite beam connections", Mat., 13(5), 1067. http://doi.org/10.3390/ma13051067   DOI
20 Draiche, K., Bousahla, A. A., Tounsi, A., Alwabli, A. S., Tounsi, A. and Mahmoud, S. R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369   DOI
21 Goyal, R., Mukherjee, A. and Goyal, S. (2016), "An investigation on bond between FRP stay-in-place formwork and concrete", Constr. Build. Mater., 113, 741-751. http://doi.org/10.1016/j.conbuildmat.2016.03.124   DOI
22 Nicoletta, B., Woods, J., Gales, J. and Fam, A. (2019), "Postfire performance of GFRP stay-in-place formwork for concrete bridge decks", J. Compos. Constr., 23(3), 04019015. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000941   DOI
23 Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219, 3226-3240. http://doi.org/10.1016/j.amc.2012.09.062   DOI
24 He, J., Liu, Y.Q., Chen, A.R. and Dai, L. (2012), "Experimental investigation of movable hybrid GFRP and concrete bridge deck", Constr. Build. Mater., 26(1), 49-64. http://doi.org/10.1016/j.conbuildmat.2011.05.002   DOI
25 Yost, J.R., Gross, S.P. and Dinehart, D.W. (2003), "Effective moment of inertia for glass fiber-reinforced polymer-reinforced concrete beams", ACI Struct. J., 100(6), 732-739.
26 Zuo, Y., Liu, Y. and He, J. (2018), "Experimental investigation on hybrid GFRP-concrete decks with T-shaped perforated ribs subjected to negative moment", Constr. Build. Mater., 158, 728-741. http://doi.org/10.1016/j.conbuildmat.2017.10.032   DOI
27 Zuo, Y., Mosallam, A., Xin, H., Liu, Y. and He, J. (2018), "Flexural performance of a hybrid GFRP-concrete bridge deck with composite T-shaped perforated rib connectors", Compos. Struct., 194, 263-278. http://doi.org/10.1016/j.compstruct.2018.03.105   DOI
28 Noel, M. and Fam, A. (2016), "Design equations for concrete bridge decks with FRP stay-in-place structural forms", J. Compos. Constr., 20(5), 04016024. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000681   DOI
29 Rashid, K., Li, X., Xie, Y. and Deng, J. (2020), "Cracking behavior of geopolymer concrete beams reinforced with steel and fiber reinforced polymer bars under flexural load", Compos. Part B-Eng., 186, 107777. http://doi.org/10.1016/j.compositesb.2020.107777   DOI
30 JTG 3362-2018 (2018), Specificantions for design of highway reinforced concrete and prestressed concrete bridges and culverts, Mot; Beijing, China.
31 Kong, S. Y., Yang, X. and Lee, Z.Y. (2018), "Mechanical performance and numerical simulation of GFRP-concrete composite panel with circular hollow connectors and epoxy adhesion", Constr. Build. Mater., 184, 643-654.http://doi.org/10.1016/j.conbuildmat.2018.07.008   DOI
32 Moretti, M.L. (2019), "Effectiveness of different confining configurations of FRP jackets for concrete columns", Struct. Eng. and Mech., 72(2), 155-168. http://doi.org/10.12989/sem.2019.72.2.155   DOI
33 Nelson, M. and Fam, A. (2013), "Structural GFRP permanent forms with T-shape ribs for bridge decks supported by precast concrete girders", J. Bridge Eng., 18(9), 813-826. http://doi.org/10.1061/(ASCE)BE.1943-5592.0000418   DOI
34 Tong, Z.J., Song, X.D. and Huang, Q (2018), "Deflection calculation method on GFRP-concrete-steel composite beam", Steel Compos. Struct., 26(5), 595-606. http://doi.org/10.12989/scs.2018.26.5.595   DOI
35 Nelson, M. and Fam, A. (2014), "Modeling of flexural behavior and punching shear of concrete bridge decks with FRP stay-inplace forms using the theory of plates", J. Eng. Mech., 140(12), 04014095. http://doi.org/10.1061/(ASCE)EM.1943-7889.0000813   DOI
36 Razaqpur, A.G. (2006), "Proposed shear design method for FRPreinforced concrete members without stirrups", ACI Struct. J., 103(1), 93-102. http://doi.org/10.1109/VAST.2006.261436   DOI
37 Sahla, M., Saidi, H., Draiche, K., Bousahla, A. A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663   DOI
38 Samaaneh, M. A., Sharif, A. M., Baluch, M. H. and Azad, A. K. (2016), "Numerical investigation of continuous composite girders strengthened with CFRP", Steel Compos. Struct., 21(6), 1307-1325. http://doi.org/10.12989/scs.2016.21.6.1307   DOI
39 Sharif, A. M., Samaaneh, M. A., Azad, A. K. and Mohammed, H. B. (2016), "Use of CFRP to Maintain Composite Action for Continuous Steel-Concrete Composite Girders", J. Compos. Constr., 20(4), 04015088.1-04015088.10. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000645   DOI
40 Tong, Z.J., Song, X.D. and Huang, Q. (2019), "Experimental and theoretical study on the flexural performance of GFRPconcrete-steel composite beams", KSCE J. Civ. Eng., 23(8): 3397-3408. http://doi.org/10.1007/s12205-019-0152-9   DOI
41 Unsal, I., Tokgoz, S., Cagatay, I. H. and Dundar, C. (2017), "A study on load-deflection behavior of two-span continuous concrete beams reinforced with GFRP and steel bars", Struct. Eng. and Mech., 63(5), 629-637. http://doi.org/10.12989/sem.2017.63.5.629   DOI