• 제목/요약/키워드: steel moment-resisting frames (MRF)

검색결과 23건 처리시간 0.025초

Effect of column loss location on structural response of a generic steel moment resisting frame

  • Rezvani, Farshad Hashemi;Jeffers, Ann E.;Asgarian, Behrouz;Ronagh, Hamid Reza
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.217-229
    • /
    • 2017
  • The effect of column loss location on the structural response of steel moment resisting frames (MRF) is investigated in this study. A series of nonlinear static and dynamic analyses were performed to determine the resistance of a generic frame to an arbitrary column loss and detect the structural members that are susceptible to failure progression beyond that point. Both force-controlled and deformation-controlled actions based on UFC 4-023-03 and ASCE/SEI 41-06 were implemented to define the acceptance criteria for nine APM cases defined in this study. Results revealed that the structural resistance against an arbitrary column loss in the top story is at least 80% smaller than that of the bottom story. In addition, it was found that the dynamic increase factor (DIF) at the failure point is at most 1.13.

Analytical investigation of the cyclic behaviour of I-shaped steel beam with reinforced web using bonded CFRP

  • Mohabeddine, Anis I.;Eshaghi, Cyrus;Correia, Jose A.F.O.;Castro, Jose M.
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.447-456
    • /
    • 2022
  • Recent experimental studies showed that deep steel I-shaped profiles classified as high ductility class sections in seismic design international codes exhibit low deformation capacity when subjected to cyclic loading. This paper presents an innovative retrofit solution to increase the rotation capacity of beams using bonded carbon fiber reinforced polymers (CFRP) patches validated with advanced finite element analysis. This investigation focuses on the flexural cyclic behaviour of I-shaped hot rolled steel deep section used as beams in moment-resisting frames (MRF) retrofitted with CFRP patches on the web. The main goal of this CFRP reinforcement is to increase the rotation capacity of the member without increasing the overstrength in order to avoid compromising the strong column-weak beam condition in MRF. A finite element model that simulates the cyclic plasticity behavior of the steel and the damage in the adhesive layer is developed. The damage is modelled using the cohesive zone modelling (CZM) technique that is able to capture the crack initiation and propagation. Details on the modelling techniques including the mesh sensitivity near the fracture zone are presented. The effectiveness of the retrofit solution depends strongly on the selection of the appropriate adhesive. Different adhesive types are investigated where the CZM parameters are calibrated from high fidelity fracture mechanics tests that are thoroughly validated in the literature. This includes a rigid adhesive commonly found in the construction industry and two tough adhesives used in the automotive industry. The results revealed that the CFRP patch can increase the rotation capacity of a steel member considerably when using tough adhesives.

Evaluation of ductility and response modification factor in moment-resisting steel frames with CFT columns

  • Hashemi, Seyed Sh.;Sadeghi, Kabir;Vaghefi, Mohammad;Shayan, Kaveh
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.643-652
    • /
    • 2017
  • One of the methods to strengthen the structures against the seismic lateral loading is the employment of the composite columns. A concrete-filled tube (CFT) has the cumulative advantages of steel and concrete. Concrete-filled steel tube columns have been widely used in the moment-resisting frame (MRF) structures, located in both non-seismic zones and high-risk seismic zones. In this paper, the results of studies on two important seismic parameters of ductility and the response modification factor (RMF) of the MRFs with CFT columns are submitted. While the studies are carried out, the effects of span length-story height ratio, the strength of materials and seismic behavior of MRFs are considered. In this regard, the ductility, RMF and the strength of 36 models of the steel MRFs with CFTs are analyzed. The fiber plastic hinges numerical simulation and pushover analysis method are used in the calculations. Based on the obtained results, the RMFs suitable for the 5-, 10- and 15- story frames are proposed.

Nonlinear finite element modeling of the self-centering steel moment connection with cushion flexural damper

  • Ali Nazeri;Reza Vahdani;Mohammad Ali Kafi
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.151-164
    • /
    • 2023
  • The latest earthquake's costly repairs and economic disruption were brought on by excessive residual drift. Self-centering systems are one of the most efficient ways in the current generation of seismic resistance system to get rid of and reduce residual drift. The mechanics and behavior of the self-centering system in response to seismic forces were impacted by a number of important factors. The amount of post-tensioning (PT) force, which is often employed for the standing posture after an earthquake, is the first important component. The energy dissipater element is another one that has a significant impact on how the self-centering system behaves. Using the damper as a replaceable and affordable tool and fuse in self-centering frames has been recommended to boost energy absorption and dampening of structural systems during earthquakes. In this research, the self-centering steel moment frame connections are equipped with cushion flexural dampers (CFDs) as an energy dissipator system to increase energy absorption, post-yielding stiffness, and ease replacement after an earthquake. Also, it has been carefully considered how to reduce permanent deformations in the self-centering steel moment frames exposed to seismic loads while maintaining adequate stiffness, strength, and ductility. After confirming the FE model's findings with an earlier experimental PT connection, the behavior of the self-centering connection using CFD has been surveyed in this study. The FE modeling takes into account strands preloading as well as geometric and material nonlinearities. In addition to contact and sliding phenomena, gap opening and closing actions are included in the models. According to the findings, self-centering moment-resisting frames (SF-MRF) combined with CFD enhance post-yielding stiffness and energy absorption with the least amount of permeant deformation in a certain CFD thickness. The obtained findings demonstrate that the effective energy dissipation ratio (β), is increased to 0.25% while also lowering the residual drift to less than 0.5%. Also, this enhancement in the self-centering connection with CFD's seismic performance was attained with a respectable moment capacity to beam plastic moment capacity ratio.

Seismic optimization and performance assessment of special steel moment-resisting frames considering nonlinear soil-structure interaction

  • Saeed Gholizadeh;Arman Milany;Oguzhan Hasancebi
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.339-353
    • /
    • 2023
  • The primary objective of the current study is to optimize and evaluate the seismic performance of steel momentresisting frame (MRF) structures considering soil-structure interaction (SSI) effects. The structural optimization is implemented in the context of performance-based design in accordance with FEMA-350 at different confidence levels from 50% to 90% by taking into account fixed- and flexible-base conditions using an efficient metaheuristic algorithm. Nonlinear response-history analysis (NRHA) is conducted to evaluate the seismic response of structures, and the beam-on-nonlinear Winkler foundation (BNWF) model is used to simulate the soil-foundation interaction under the MRFs. The seismic performance of optimally designed fixed- and flexible-base steel MRFs are compared in terms of overall damage index, seismic collapse safety, and interstory drift ratios at different performance levels. Two illustrative examples of 6- and 12-story steel MRFs are presented. The results show that the consideration of SSI in the optimization process of 6- and 12-story steel MRFs results in an increase of 1.0 to 9.0 % and 0.5 to 5.0 % in structural weight and a slight decrease in structural seismic safety at different confidence levels.

비좌굴 가새골조의 층별 이력에너지 분포 (A Story-wise Distribution of Hysteretic Energy in Buckling-Restrained Braced Frames)

  • 최현훈;김진구
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.286-293
    • /
    • 2003
  • In this study a story-wise distribution of hysteretic energy in multi-story steel moment-resisting framse (MRE), buckling restrained braced frames (BRBF-R), and hinge-connected framed structures with buckling restrained braces (BRBF-H) subjected to various earthquake ground excitations was investigated. According to analysis results the hysteretic energy in MRF and BRBF-R turned out to be the maximum at the base and monotonically diminishes with increasing height. In top stories the plastic deformation of members is almost negligible. However the story-wise distribution of hysteretic energy in BRBF-H was relatively uniform over the height of the structure. This is considered to be more desirable because damage is not concentrated in a single story.

  • PDF

The effect of infill walls on the fundamental period of steel frames by considering soil-structure interaction

  • Kianoosh Kiani;Sayed Mohammad Motovali Emami
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.417-431
    • /
    • 2024
  • The fundamental period of vibration is one of the most critical parameters in the analysis and design of structures, as it depends on the distribution of stiffness and mass within the structure. Therefore, building codes propose empirical equations based on the observed periods of actual buildings during seismic events and ambient vibration tests. However, despite the fact that infill walls increase the stiffness and mass of the structure, causing significant changes in the fundamental period, most of these equations do not account for the presence of infills walls in the structure. Typically, these equations are dependent on both the structural system type and building height. The different values between the empirical and analytical periods are due to the elimination of non-structural effects in the analytical methods. Therefore, the presence of non-structural elements, such as infill panels, should be carefully considered. Another critical factor influencing the fundamental period is the effect of Soil-Structure Interaction (SSI). Most seismic building design codes generally consider SSI to be beneficial to the structural system under seismic loading, as it increases the fundamental period and leads to higher damping of the system. Recent case studies and postseismic observations suggest that SSI can have detrimental effects, and neglecting its impact could lead to unsafe design, especially for structures located on soft soil. The current research focuses on investigating the effect of infill panels on the fundamental period of moment-resisting and eccentrically braced steel frames while considering the influence of soil-structure interaction. To achieve this, the effects of building height, infill wall stiffness, infill openings and soil structure interactions were studied using 3, 6, 9, 12, 15 and 18-story 3-D frames. These frames were modeled and analyzed using SeismoStruct software. The calculated values of the fundamental period were then compared with those obtained from the proposed equation in the seismic code. The results indicate that changing the number of stories and the soil type significantly affects the fundamental period of structures. Moreover, as the percentage of infill openings increases, the fundamental period of the structure increases almost linearly. Additionally, soil-structure interaction strongly affects the fundamental periods of structures, especially for more flexible soils. This effect is more pronounced when the infill wall stiffness is higher. In conclusion, new equations are proposed for predicting the fundamental periods of Moment Resisting Frame (MRF) and Eccentrically Braced Frame (EBF) buildings. These equations are functions of various parameters, including building height, modulus of elasticity, infill wall thickness, infill wall percentage, and soil types.

다층 비좌굴 가새골조와 등가 단자유도계의 에너지 요구량의 비교 (Comparison of Energy Demand in Multi-Story Buckling Restrained Braced Frame and Equivalent SDOF System)

  • 김진구;원영섭
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.173-182
    • /
    • 2003
  • 비선형 정적해석 및 에너지를 이용한 설계방법에서는 구조물을 등가의 단자유도계로 치환하여 해석하는 것이 일반적이다. 본 연구에서는 지진하중에 의한 3층, 8층, 20층 철골 모멘트저항골조(MRF), 비좌굴 가새골조(BRBF)와 힌지접합 비좌굴 가새골조 (DTBF) 구조물의 에너지 요구량을 등가 단자유도계 시스템(ESDOF)의 에너지 요구량과 비교하여 등가단자유도계로 치환하는 방법의 타당성을 검토하였다 입력에너지와 이력에너지를 산정하기 위하여 연암 지반, 연약한 토사, 단층 근처의 지반에서 계측된 60개의 지진을 사용하였으며, 모드 질량계수가 0.8보다 작은 경우 ESDOF로 변환할 때 고차모드의 효과를 고려하였다. 연구결과에 따르면 3층과 8층 MRF와 DTBF에서의 이력에너지와 입력에너지는 ESDOF의 해석결과와 비교적 잘 일치하였다. 그러나 20층 BRBF에서는 ESDOF의 결과가 본 구조물의 결과를 과소평가하는 것으로 나타났다.

좌굴이 방지된 가새가 설치된 철골조 건물의 에너지 요구량 (Energy Demand in Steel Structures with Buckling Restrained Braces)

  • 최현훈;김진구
    • 한국지진공학회논문집
    • /
    • 제7권2호
    • /
    • pp.29-37
    • /
    • 2003
  • 본 연구에서는 지진하중에 의하여 철골 모멘트저항골조(MRF)와 좌굴이 방지된 가새골조(BRBF) 그리고 힌지로 접합된 좌굴이 방지된 가새골조(HBRBF)에서 발생하는 층별 이력에너지의 분포에 대하여 고찰하였다. 예제 구조물의 에너지 요구량을 산정하기 위하여 다른 지반조건에서 계측된 60개의 지진기록을 사용하였다. 해석결과에 따르면 MRF와 BRBF에서의 이력에너지는 밑면에서 최대가 되고 상부층으로 갈수록 점진적으로 감소하여, 상부층에서는 부재의 이력거동이 거의 발생하지 않았다. 그러나 HBRBF에서의 층별 이력에너지는 구조물의 높이에 따라 상대적으로 균등하게 분포하였으며, 이러한 경우 손상이 한 층에 집중적으로 발생하지 않아 다른 시스템에 비하여 보다 바람직하다고 할 수 있다. 연암 지반, 연약한 토사, 단층 근처의 지반 조건에 따른 에너지의 분포형태는 거의 동일하게 나타났다.

Evaluation of genetic algorithms for the optimum distribution of viscous dampers in steel frames under strong earthquakes

  • Huang, Xiameng
    • Earthquakes and Structures
    • /
    • 제14권3호
    • /
    • pp.215-227
    • /
    • 2018
  • Supplemental passive control devices are widely considered as an important tool to mitigate the dynamic response of a building under seismic excitation. Nevertheless, a systematic method for strategically placing dampers in the buildings is not prescribed in building codes and guidelines. Many deterministic and stochastic methods have been proposed by previous researchers to investigate the optimum distribution of the viscous dampers in the steel frames. However, the seismic performances of the retrofitted buildings that are under large earthquake intensity levels or near collapse state have not been evaluated by any seismic research. Recent years, an increasing number of studies utilize genetic algorithms (GA) to explore the complex engineering optimization problems. GA interfaced with nonlinear response history (NRH) analysis is considered as one of the most powerful and popular stochastic methods to deal with the nonlinear optimization problem of damper distribution. In this paper, the effectiveness and the efficiency of GA on optimizing damper distribution are first evaluated by strong ground motions associated with the collapse failure. A practical optimization framework using GA and NRH analysis is proposed for optimizing the distribution of the fluid viscous dampers within the moment resisting frames (MRF) regarding the improvements of large drifts under intensive seismic context. Both a 10-storey and a 20-storey building are involved to explore higher mode effect. A far-fault and a near-fault earthquake environment are also considered for the frames under different seismic intensity levels. To evaluate the improvements obtained from the GA optimization regarding the collapse performance of the buildings, Incremental Dynamic Analysis (IDA) is conducted and comparisons are made between the GA damper distribution and stiffness proportional damping distribution on the collapse probability of the retrofitted frames.