• Title/Summary/Keyword: steel friction

Search Result 907, Processing Time 0.03 seconds

Tribological Properties of Hybrid Friction Materials: Combining Low-steel and Non-steel Friction Materials (금속계와 유기계 마찰재의 분포에 따른 하이브리드 마찰재의 마찰 특성)

  • Kim, JinWoo;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.117-123
    • /
    • 2012
  • Tribological properties of hybrid type friction materials were studied. Hybrid friction materials were produced by combining non-steel(NS) and low-steel(LS) type friction materials. The emphasis of the investigation was given to possible synergistic effects from the two different friction materials, in terms of friction stability at high temperatures and the amplitude of friction oscillation, also known as stick-slip at low sliding speeds. The high temperature friction test results showed that the friction effectiveness of the hybrid friction material was well sustained compared to LS and NS friction materials. Wear resistance of the hybrid type was similar to LS friction materials. Examination of the rubbing surfaces after tests revealed that the friction characteristics of the hybrid friction material were attributed to the wear debris produced from low-steel friction materials, which were migrated to the surface of the non-steel friction material, forming new contact plateaus. The stick-slip amplitude and its frequency were pronounced when non-steel friction material was tested, while hybrid and low-steel types showed relatively small stick-slip amplitudes. These results suggest possible improvement of tribological properties by designing a hybrid composite of low-steel and non-steel friction materials.

Friction Characteristics of Non-Asbestos Organic (NAO) and Low-Steel Friction Materials: The Comparative Study

  • Kim, Seoun Jin;Jang, Ho
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Eviction characteristics of two typical friction materials (non-asbestos organic and low-steel friction materials) for an automotive brake system were investigated using an inertial brake dynamometer. In particular, the effect of sliding speed on friction coefficient was carefully investigated employing various test modes. The two friction materials were developed for commercial applications and were different mainly in the type and the amount of metallic ingredients in the friction material. The dynamometer test showed that the low-steel friction material was sensitive to the sliding speed exhibiting a negative $\mu$-v relation. On the other hand, the non-asbestos organic friction material was less sensitive to the sliding speed. The low steel friction materials with a negative $\mu$-v relation also induced larger vibration amplitude during brake applications.

  • PDF

The Effect of Oxide Layer Formed on TiN Coated Ball and Steel Disk on Friction Characteristics in Various Sliding Conditions (미끄럼조건에 따라 TiN 코팅볼과 스틸디스크에 형성되는 산화막이 마찰특성에 미치는 영향)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.459-466
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk on friction characteristics in various sliding conditions were investigated. AISI52100 steel ball was used for the substrate of coated ball specimens, which were prepared by depositing TiN coating with 1(m in coating thickness. AISI1045 steel was used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. From the test results, the frictional characteristic between the two materials was predominated by iron oxide layer that formed on wear tract of counter-body and this layer caused friction transition and high friction. And the adhesive wear occurred from steel disk to TiN coated ball caused the formation of oxide layer on counter parts between the two materials.

강의 마찰용접에 미치는 탄소당량의 영향

  • 나석주;양영수
    • Journal of Welding and Joining
    • /
    • v.4 no.3
    • /
    • pp.32-42
    • /
    • 1986
  • In this study, the influence of carbon equivalents on friction welds of dissimilar steels was investigated. Four types of carbon steels with 10mm diameter were welded to a high-speed tool steel SKH 9. Main experimental results could be summarized as follows (1) Under constant friction pressure, the friction time increased almost linearly with the increasing burn-off length, while the forge length decreased almost linearly. (2) The maximum hardness in carbon steels increased almost linearly with the increasing carbon equivalent, but was much lower than that in the high speed steel. (3) After quenching and tempering of dissimilar steel friction welds, the hardness in carbon steel weldments became similar as that in the base metal, while the hardness in SKH 9 weld was still higher that of the base metal. (4) Relative movement in the friction phae occurred not at the interface of the weldments, but in the high speed steed steel near the interface. (5) For considered material combinations and welding parameters, most of fractures in tension and twisting tests occurred in the base metal. And welds with so high strength could produced in a wide range of welding parameters.

  • PDF

Effects of Steel Fiber, Zircon, and Cashew in the Brake Friction Materials on Creep Groan Phenomena (자동차 브레이크용 마찰재 내의 강철섬유, 지르콘, 캐슈가 크립 그론에 미치는 영향)

  • Jang, Ho;Lee, Kang-Sun;Lee, Eun-Ju;Jeong, Geun-Joong;Song, Hyun-Woo
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.278-282
    • /
    • 2007
  • Friction characteristics of a low-steel friction material were examined to investigate creep groan phenomena. The amount of three ingredients (steel fiber, $ZrSiO_4$, cashew) were changed to produce test specimens using a constrained mixture design. Tribological properties of the friction material specimens were obtained by using a 1/5 scale dynamometer. Results showed that the amount of three different ingredients strongly affected the level of friction coefficient and the difference between the static friction coefficient and the kinetic friction coefficient $({\Delta}{\mu}).\;ZrSiO_4$ and steel fiber tended to increase the average friction coefficient and aggravated the stick-slip phenomena suggesting high creep groan propensity. On the other hand, cashew tended to decrease average friction coefficient and ${\Delta}{\mu}$.

A Study on the Evaluation of the Friction and Wear Properties of the Sprayed Coating Layer (용사피막의 마찰.마모 특성 평가에 관한 연구)

  • 김영식;김윤해;김종호;최영국;강태영
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.66-74
    • /
    • 1996
  • In this study, friction and wear properties of flame sprayed specimens and hard Cr plating specimens were tested, and their properties were compared each other in dry and lubrication condition. Ni-Cr powder and steel powder were used as the spray powder and sprayed on the steel(S45C) substrate by flame sprayed method. Each wear surface was observed with SEM after friction and wear test. The friction coefficient of the as-forged steel specimens was the highest among surface treatment specimens, and the other specimens appeared in order as follows ; hard Cr-plating specimens, Ni-Cr powder sprayed specimens, steel powder sprayed specimens. Comparing the wear volumes in dry condition, as forged steel specimens appeared the greatest wear volume, and the other specimens appeared wear volume in order as follows ; Ni-Cr powder sprayed specimens, steel powder sprayed specimens, hard Cr plating specimens. In friction and wear test, the hard Cr plating specimens were worn by the abrasive phenomenon, involving the cracks. The wear volume of steel powder sprayed specimens was lower than that of Ni-Cr powder sprayed specimens. Comparing the tensile strength of both sprayed coating layers, the steel powder sprayed coating layer was better than Ni-Cr powder sprayed coating layer.

  • PDF

Evaluation of Friction Characteristics for High-Strength-Steel Sheets Depending on Conditions (마찰조건에 따른 고강도 강판의 마찰특성 평가)

  • Kim, J. E.;Heo, J. Y.;Yoon, I. C.;Song, J. S.;Youn, K. T.;Park, C. D.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.381-386
    • /
    • 2015
  • Recently, high-strength-steel sheets have been used extensively for increasing fuel-efficiency and stability in automobiles. A study on the characteristics regarding friction factors is required because high-strength-steel sheets have higher contact pressure at the tool interface as compared to low-strength steel sheets. For the current study, a sheet friction test was used to examine the influence of several factors on friction. The friction tests were performed on two types of sheet steels (SPFC590 and SPFC980) to obtain friction coefficients as a function of contact pressure, surface roughness, lubricant viscosity, and speed. Based on the experimental results for SPFC590 and SPFC980, the friction coefficient decreased with increasing contact pressure, but the friction coefficient increased with increasing surface roughness. Also, the friction coefficient decreased with increasing lubricant viscosity and decreasing speed.

Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials

  • Anoushehei, Majid;Daneshjoo, Farhad;Mahboubi, Shima;Khazaeli, Sajjad
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.239-248
    • /
    • 2017
  • Friction dampers are displacement dependent energy dissipation devices which dissipate earthquake energy through friction mechanism and widely used in improving the seismic behavior of new structures and rehabilitation of existing structures. In this paper, the cyclic behavior of a friction damper with different friction materials is investigated through experimental tests under cyclic loading. The damper is made of steel plates, friction pads, preloaded bolts and hard washers. The paper aims at investigating the hysteretic behavior of three friction materials under cyclic loading to be utilized in friction damper. The tested friction materials are: powder lining, super lining and metal lining. The experimental results are studied according to FEMA-356 acceptance criteria and the most appropriate friction material is selected by comparing all friction materials results.

AN EXPERIMENTAL STUDY ON FRICTIONAL FORCES OF VARIOUS ORTHODONTIC WIRES UNDER ARTIFICIAL SALIVA (인공타액하에서 수종 교정선의 마찰력에 관한 실험적 연구)

  • Hwang, Hyeon-Shik;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.19 no.1 s.27
    • /
    • pp.245-256
    • /
    • 1989
  • Translational movement along an arch wire requires sufficient force to overcome frictional forces between bracket and arch wire. The orthodontist must appreciate the importance of friction in this process, and study out the influencing factors on the level of friction. The purpose of this study was to evaluate the effect of artificial saliva on frictional resistances generated between the bracket and arch wire. Independent variables of this study were arch wire material, angulation and environment. Static frictional forces of cobalt-chromium, heat-treated cobalt-chromium, beta-titanium, stainless steel wires were measured under non-angulated dry, angulated dry, non-angulated saliva, angulated saliva conditions. The results were as follows: 1. Stainless steel wires showed lower friction values in non-angulated dry condition, and heat-treated cobalt-chromium wires showed higher friction values in angulated dry condition. Higher friction values were showed in order of cobalt-chromium. stainless steel, heat-treated cobalt-chromium and beta-titanium wires in non-angulated saliva condition. and were showed in order of stainless steel, cobalt-chromium, heat-treated cobalt-chromium, beta-titanium wires in angulated saliva condition. 2. Angulation increased friction for stainless steel wires under dry condition. 3. Artificial saliva decreased friction for cobalt-chromium wires and increased friction for stainless steel wires under non-angulated condition. 4. Artificial saliva decreased friction for all wires except beta-titanium wires under angulated condition. 5. Regardless of angulation or environment. heat-treated cobalt-chromium and beta-titanium wires showed higher friction values, and stainless steel wires showed lower friction values.

  • PDF

Contact Pressure Effect on Frictional Behavior of Sheet Steel for Automotive Stamping (자동차용 강판의 표면 마찰 특성에 대한 접촉 압력의 영향)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.99-103
    • /
    • 2011
  • Many parameters influence the frictional behavior of steel sheet during stamping. The contact pressure between a die and a sheet during stamping is one of them. Thus, this parameter is investigated for high strength steel (HSS) sheets, which are widely used for auto body panels due to their potential for weight reduction. Since HSS extend the limits of contact pressure for mild steel, the effect of this parameter on friction cannot be ignored. To investigate the influence of contact pressure on the frictional behavior of steel sheets, a flat type of friction test was conducted on three different steel sheets under various contact pressures. For bare steel sheets, the curve representing the relationship between contact pressure and friction coefficient exhibits a U shape. Coated steel sheets show a similar tendency except at low contact pressure. For these materials, when the contact pressure is very low, the friction coefficient slightly increases with pressure before it starts to decrease. The test results show that the effect of contact pressure on frictional behavior of steel sheet is not negligible even for contact pressures that are lower than the strength of HSS sheet.