• 제목/요약/키워드: steel fiber reinforced high-strength concrete

검색결과 328건 처리시간 0.023초

강섬유보강 고강도 경량콘크리트의 부착에 관한 실험적 연구 (An Experimental Study on the Bond of Steel Fiber Reinforced High-Strength Lightweight Concrete)

  • 민준수;김상우;이시학;김용부
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.613-616
    • /
    • 1999
  • The bond between reinforcing bar and concrete is a significant factor to confirm that they behave uniformly in the reinforced concrete. Thus, the studies on this field have been conducted by many researchers. But for the high strength lightweight concrete few studies have been done. In this study, the steel fiber reinforced high strength lightweight concrete developed to complement the brittleness of the high strength lightweight concrete was studied experimentally to find the local bond stress. Total 20 specimens were tested and the measured test values were compared with those calculated according to ACI 318-95 code and CEB-FIP code, respectively. The results indicate that the maximum bond stress has been influenced by increment of volume fracture of steel fiber, compressive strength and cover, Especially steel fiber caused not only increment of bond strength but also ductile behaviro.

  • PDF

탄소섬유 및 유리섬유로 보강한 합성보의 내력산정과 보강효과에 대한연구 (A Study on the Strength Capacity and the Strengthening Effects of Steel Reinforced Concrete(SRC) Beams with Carbon Fiber Sheets (CFS) and Glass Fiber Sheets (GFS))

  • 김희규;신영수;최완철;홍영균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.565-570
    • /
    • 1997
  • This study is on the strength capacity and the strengthening effects of crarbon fiber sheets(CFS) and glass fiber sheets (GFS) on steel reinforced concrete(SRC) beams. SRC beams are often used on high-rise building construction to save story height and construction cost. However, there are no strengthening design code in Korea and most engineers design it as steel beams ignored the composite effect if reinforced concrete. Test results on steel reinforced concrete beams reveal thar the strength capacity of SRC beam is more than simple addition of steel and reinforced concrete beams. In case of steel reinforced concrete beams, ultimate moment capacity of strengthening beam of carbon fiber sheets is 120% of non-strengthening one.

  • PDF

Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.63-71
    • /
    • 2019
  • Thermal energy from high temperatures can cause concrete damage, including mechanical and chemical degradation. In view of this, the residual mechanical properties of high-strength fiber reinforced concrete with a design strength of 75 MPa exposed to $400-800^{\circ}C$ were investigated in this study. The test results show that the average residual compressive strength of high-strength fiber reinforced concrete after being exposed to $400-800^{\circ}C$ was 88%, 69%, and 23% of roomtemperature strength, respectively. In addition, the benefit of steel fibers on the residual compressive strength of concrete was limited, but polypropylene fibers can help to maintain the residual compressive strength and flexural strength of concrete after exposure to $400-600^{\circ}C$. Further, the load-deflection curve of specimen containing steel fibers exposed to $400-800^{\circ}C$ had a better fracture toughness.

하이브리드 강섬유 보강 초고강도 콘크리트 보의 휨강도 (Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams)

  • 양인환;김경철;조창빈
    • 콘크리트학회논문집
    • /
    • 제27권3호
    • /
    • pp.283-290
    • /
    • 2015
  • 이 논문에서는 하이브리드 강섬유로 보강된 콘크리트의 부재의 휨강도를 예측하기 위한 수치해석기법을 제시하였다. 이를 위해 휨을 받는 하이브리드 강섬유 보강 콘크리트 실험과 수치해석연구를 수행하였다. 부피비 1.5%의 하이브리드 강섬유 보강 초고강도 콘크리트의 휨거동 특성 실험을 수행하였다. 강섬유보강 콘크리트의 인장연화특성은 구조적 거동에 매우 중요한 역할을 하며, 하이브리드 강섬유 보강 초고강도 콘크리트의 하중-균열개구변위 실험결과를 반영하여 가상균열모델에 근거한 역해석에 의해 인장연화모델링을 수행하였다. 제안기법에 의한 콘크리트 보의 모멘트-곡률 수치해석결과를 실험결과와 비교하였으며, 수치해석결과와 실험결과는 전반적으로 잘 일치하고 있다. 따라서, 제안기법에 의해 강섬유 보강 초고강도 콘크리트 보의 휨강도를 합리적으로 예측할 수 있다고 판단된다.

Interfacial bond properties and comparison of various interfacial bond stress calculation methods of steel and steel fiber reinforced concrete

  • Wu, Kai;Zheng, Huiming;Lin, Junfu;Li, Hui;Zhao, Jixiang
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.515-531
    • /
    • 2020
  • Due to the construction difficulties of steel reinforced concrete (SRC), a new composite structure of steel and steel fiber reinforced concrete (SSFRC) is proposed for solving construction problems of SRC. This paper aims to investigate the bond properties and composition of interfacial bond stress between steel and steel fiber reinforced concrete. Considering the design parameters of section type, steel fiber ratio, interface embedded length and concrete cover thickness, a total of 36 specimens were fabricated. The bond properties of specimens were studied, and three different methods of calculating interfacial bond stress were analyzed. The results show: relative slip first occurs at the free end; Bearing capacity of specimens increases with the increase of interface embedded length. While the larger interface embedded length is, the smaller the average bond strength is. The average bond strength increases with the increase of concrete cover thickness and steel fiber ratio. And calculation method 3 proposed in this paper can not only reasonably explain the hardening stage after the loading end curve yielding, but also can be applied to steel reinforced high-strength concrete (SRHC) and steel reinforced recycled coarse aggregate concrete (SRRAC).

Local bond-slip behavior of fiber reinforced LWAC after exposure to elevated temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.437-445
    • /
    • 2020
  • The microstructure and mechanical properties of concrete will degrade significantly at high temperatures, thus affecting the bond strength between reinforcing steel and surrounding concrete in reinforced concrete members. In this study, the effect of individual and hybrid fiber on the local bond-slip behavior of lightweight aggregate concrete (LWAC) after exposure to elevated temperatures was experimentally investigated. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths of the pullout specimens were 4.2 times the bar diameter. The parameters investigated included concrete type (control group: ordinary LWAC; experimental group: fiber reinforced LWAC), concrete strength, fiber type, and targeted temperature. The test results showed that for medium-strength LWACs exposed to high temperatures, the use of only steel fibers did not significantly increase the residual bond strength. Moreover, the addition of individual and hybrid fiber had little effect on the residual bond strength of the high-strength LWAC after exposure to a temperature of 800℃.

전단보강이 없는 강섬유보강 콘크리트보의 전단강도 (Shear Strength of Steel Fiber Reinforced Concrete Beams without Stirrups)

  • 구성모;이정석;김우석;백승민;곽윤근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.591-596
    • /
    • 2001
  • Nine steel fiber reinforced high strength concrete beams and three steel fiber reinforced normal strength concrete beams without stirrups were tested by two point load. The variables studied in this investigation are the shear span/depth ratios of a/d = 2, 3 and 4, steel fiber volume fractions of V$_{f}$ : 0, 0.5% and 0.75% and concrete compressive strengths of f$_{ck}$: 630kgf/$cm^{2}$, and 310kgf/$cm^{2}$. Based on these tests and on tests by previous investigators, predictive equation is proposed for evaluating the ultimate shear strength of steel fiber reinforced concrete beams without stirrups. The proposed equation gave good prediction for the ultimate shear strength of the tested beams.

  • PDF

Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.477-485
    • /
    • 2018
  • This study aims to investigate the influence of individual and hybrid fiber on the local bond-slip behavior of medium and high strength concrete after exposure to different high temperatures. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths in the pullout specimens were three times the bar diameter. The parameters investigated include concrete type (control group: ordinary concrete; experimental group: fiber concrete), concrete strength, fiber type and targeted temperature. The test results showed that the ultimate bond stress in the local bond stress versus slip curve of the high strength fiber reinforced concrete was higher than that of the medium strength fiber reinforced concrete. In addition, the use of hybrid combinations of steel fiber and polypropylene fiber can enhance the residual bond strength ratio of high strength concrete.

A new method for earthquake strengthening of old R/C structures without the use of conventional reinforcement

  • Tsonos, Alexander-Dimitrios G.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.391-403
    • /
    • 2014
  • In this study an innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets (i.e., longitudinal reinforcement, stirrups, hoops). The proposed in this study innovative steel fiber high-strength or ultra high-strength concrete jackets were proved to be much more effective than the reinforced concrete jackets and the FRP-jackets when used for the earthquake-resistant strengthening of reinforced concrete structural members.

Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • 제11권2호
    • /
    • pp.149-167
    • /
    • 2013
  • The complete stress-strain behavior of steel fiber reinforced concrete in compression is needed for the analysis and design of structures. An experimental investigation was carried out to generate the complete stress-strain curve of high-performance steel fiber reinforced concrete (HPSFRC) with a strength range of 52-80 MPa. The variation in concrete strength was achieved by varying the water-to-cementitious materials ratio of 0.40-0.25 and steel fiber content (Vf = 0.5, 1.0 and 1.5% with l/d = 80 and 55) in terms of fiber reinforcing parameter, at 10% silica fume replacement. The effects of these parameters on the shape of stress-strain curves are presented. Based on the test data, a simple model is proposed to generate the complete stress-strain relationship for HPSFRC. The proposed model has been found to give good correlation with the stress-strain curves generated experimentally. Inclusion of fibers into HPC improved the ductility considerably. Equations to quantify the effect of fibers on compressive strength, strain at peak stress and toughness of concrete in terms of fiber reinforcing index are also proposed, which predicted the test data quite accurately. Compressive strength prediction model was validated with the strength data of earlier researchers with an absolute variation of 2.1%.