• Title/Summary/Keyword: steel bar inspection

Search Result 82, Processing Time 0.019 seconds

Analysis for Mechanical Behavior of GFRP Rock Bolt for Permanent Support of Tunnel (영구 터널지보재로서의 활용을 위한 GFRP 록볼트의 역학적 거동 분석)

  • Sim, Jong-Sung;Kang, Tae-Sung;Lee, Yong-Taek;Kim, Hyun-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.124-131
    • /
    • 2010
  • Rock Bolt generally utilizes deformed reinforcing bar welded from structural steel of which strength is higher than required for making advantageous use of the support function of ground. In the condition with highly corrosive underground water, however, problem frequently occurs on tunnel and slope stabilization in terms of repair, rehabilitation and maintenance issues due to the destruction of Rock Bolt by corrosion of steel. A structural performance evaluation for GFRP Rock Bolt was conducted for the purpose of resolving the foregoing problem and at the same time developing a permanently-usable support material. This study intended to evaluate the safety factor of GFRP Rock Bolt by implementing the slope stability interpretation via structural analysis on the basis of its structural characteristics derived from both tensile force function test and shear force function test. It is judged based on the results that GFRP Rock Bolt would secure sufficient ground stability as an alternative material for existing Steel Rock Bolt.

Structural Characteristics Analysis of Steel Box Girder Bridge being stressed the PS Steel Wires at the Upper Slab of the Intermediate Support (지점부 상부슬래브에 PS강선 긴장된 강 박스거더교의 구조적 특성 분석)

  • Cha, Tae-Gweon;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • The concrete deck slab at the continuous span support of the steel box girder bridge is a structure that is combined with the upper flange. It is a structure that can cause tension cracks in the deck slab at the support causing problems such as durability degradation in long span bridges. This is because the tensile stress in the longitudinal direction of the slab exceeds the design tensile strength due to the effects of dead load and live load when applying a long span. Accordingly, it is necessary to control tensile cracking by adding a reinforcing bar in the axial direction to the slab at the support and to introduce additional compressive stress. To solve this problem, a structural system of a steel box girder bridge was proposed that introduces compressive stress as PS steel wire tension in the tensile stress section of the upper slab in the continuous support. The resulting structural performance was compared and verified through the finite element analysis and the steel wire tension test of the actual specimen. By introducing compressive stress that can control the tensile stress and cracking of the slab generated in the negative moment through the tension of the PS steel wire, it is possible to improve structural safety and strengthen durability compared to the existing steel box girder bridge.

Survey Research on Thermal Situation of Office Buildings (사무소 건축물의 단열상황에 관한 조사연구)

  • Jung, Ui In;Kim, Bong Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • This study is to evaluate the thermal insulation of the curtain wall of the buildings constructed since the 1990s to the buildings currently under construction in 2011 and to provide the basic data for repairing and reinforcing and designing the thermal insulation. To this effect, the temperature difference by part was analyzed through measuring the inside and outside surface temperature of the curtain wall of the office building, and thereafter, the conditions of the thermal insulation and the thermal bridge part were examined. The result of the study is as follows; Not only in the winter season when the temperature difference between the indoor-outdoor is over $20^{\circ}C$, but also in the summer season when there is a small temperature difference, the temperature difference between the inside and outside of the frame is $2^{\circ}C{\sim}4^{\circ}C$ equally. Under such conditions as stated above, the thermal bridge occurred, which resulted from the heat flow of the steel frame part (mullion, transom), and therefore, the reinforcement of the thermal insulation is considered to be needed.

Strain Measurement and Failure Detection of Reinforced Concrete Beams Using Fiber Otpic Michelson Sensors (광섬유 마이켈슨 센서에 의한 RC보의 변형률 측정 및 파손의 검출)

  • Kwon, Il-Bum;Huh, Yong-Hak;Park, Phi-Lip;Kim, Dong-Jin;Lee, Dong-Chun;Hong, Sung-Hyuk;Moon, Hahn-Gue
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.223-236
    • /
    • 1999
  • The need to monitor and undertake remidial works on large structures has greatly increased in recent years due to the appearance of widespread faults in large structures such as bridges and buildings, etc, of 20 or more years of age. The health condition of structures must be monitored continuously to maintenance the structures. In order to do in-situ monitoring, the sensor is necessary to be embedded in the structures. Fiber optic sensors can be embedded in the structures to get the health information in the structures. The fiber sensor was constructed with $3{\times}3$ fiber couplers to sense the multi-point strains and failure instants. The 4 RC (reinforced concrete) beams were made to 2 of A type, 2 of B type beams. These beams were reinforced by the reinforcing bars, and were tested under the flexural loading. The behavior of the beams was simultaneously measured by the fiber optic sensors, electrical strain gages, and LVDT. The states of the beams were interpreted by these all signals. By these experiments, There were verified that the fiber optic sensors could measure the structural strains and failure instants of the RC beams, The fiber sensors were well operated until the failure of the beams. It was shown that the strains of the reinforcing steel bar can be used to monitor the health condition of the beams through the flexural test of RC beams. On the other words, the results were arrived that the two strains in the reinforcing bar measured at the same point can give the information of the structural health status. Also, the failure instants of beams were well detected from the fiber optic filtered signals.

  • PDF

Flexural Behavior of Concrete Beams Reinforced with Lap Spliced FRP Bar (겹이음된 FRP 보강근으로 보강된 콘크리트 보의 휨거동)

  • Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.186-194
    • /
    • 2009
  • This is a part of the extensive ongoing investigation being carried out by author to develop appropriate design procedure of the concrete member reinforced with FRP rebars instead of conventional steel rebars. This study presents the experimental results of a research programme to assess the structural characteristics of spliced rebar in reinforced concrete members with FRP reinforcement. The test variables are the diameter of FRP rebar and the embedment length. The development length (ld) was calculated according to the ACI 440 for FRP rebars in concrete. A total of 14 concrete beams reinforced with spliced FRP rebars and 4 reference beams reinforced with non-spliced FRP rebars were tested. The effects of bar size (10, 13, 16 and 19 mm) and splice length (from 0.72 to 1.58ld) on the bond strength were empirically evaluated. The test results indicate that a modification factor of 1.3 and 1.6 is relatively sufficient for the bond development length of glass FRP rebars in order to achieve an adequate tension lap splice length.

Behaviour of Truss Bridges by Using the Post-tensioning (후긴장을 이용한 트러스의 성능 향상 평가)

  • Jeung, Bae-Keun;Han, Kyung-Bong;Eom, Jun-Sik;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.247-261
    • /
    • 2003
  • The technique of posttensioning has been used successfully to improve the performance of existing concrete structures. However, very few applications of this technique can be found in steel structures. Posttensioning by means of high strength cable or bar can be used to effectively increase the working load capacity of Truss Bridges. The benefits of posttensioning trusses can be achieved in strengthening of existing structures as well as in the design of new structures. In this paper, the elastic behavior of posttensioned trusses with straight and draped tendon profiles is examined. For the analysis of posttensioned trusses in the elastic range of behavior, two methods are presented, namely, the flexibility method and the mixed-method, i.e., a combination of the stiffness and flexibility methods. Using the presented methods, the effects of design variables such as the tendon profile, truss type, prestress force, and tendon eccentricity on the working load and deflection of trusses are studied. The results show that the allowable load of truss increases proportionally with increase in prestress force and eccentricity. Posttesioning enlarges the elastic range, increases redundancy, and reduces deflection and member stresses. Thus, the remaining life of a truss bridge can be increased relatively inexpensively.

Crack Detection in Mortar Beams using Optical Time Domain Reflectometry (광학적 시간영역 반사시스템을 이용한 모르타르 보의 균열 탐사)

  • Rhim, Hong-Chul;Lee, Kyoung-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.185-195
    • /
    • 2000
  • Detection of cracks in concrete beams using optical fiber sensors is useful for monitoring of concrete structures. In this study, optical time domain reflectometry (OTDR) is used to detect cracks. Resolution of OTDR is the main contributor to detect cracks in concrete structures. The OTDR used in this study can detect cracks with high precision of 0.5 m. Two mortar beams, reinforced with a 19 mm diameter steel bar, are made with the dimensions of 140 mm (width) ${\times}$ 200 mm (depth) ${\times}$ 2.000 mm (length). Two fibers are embedded inside each beam and two fibers are attached under the beams. The application of measurement system which consists of fiber and FC/PC connecter is studied. For this, theory of optics, resolution, crack moment, and size of specimens are investigated. From the measured data, it is verified that fibers which are attached under the beam can detect the crack in beams effectively. However, fibers embedded inside the beam are unable to detect cracks in beams using the OTDR in this study.

  • PDF

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

Evaluation of Structural Behavior of Reinforced Concrete Exterior Beam-Column Joints with High-Strength Concrete (고강도 콘크리트를 사용한 철근콘크리트 외부 보-기둥 접합부의 거동 평가)

  • Lee, Bum-Sik;Kim, Kyung-Duk;Kim, Sang-Woo;Kim, Kil-Hee;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.72-81
    • /
    • 2014
  • This paper reports the test results of reinforced concrete exterior beam-column joints with high-strength concrete. The main parameters of eight specimens were joint failure modes, the compressive strength of concrete, and the head shapes of steel bars. All specimens were designed according to ACI 352R-02 design recommendations. Two types of failure modes were considered; J-failure and BJ-failure. The longitudinal steel bars were anchored by 90 degree standard hooks or headed reinforcement. Experimental results indicated that the current ACI design recommendation limited by the compressive strength of concrete somewhat underestimated the strength of beam-column joints with high-strength concrete. In the specimens showed joint shear failure, the strength of beam-column joints with headed bars was approximately 10 percent higher than that of joints with 90 degree standard hooks.

Effect of Corrosion Level and Crack Width on the Bond-Slip Behavior at the Interface between Concrete and Corroded Steel Rebar (부식 수준 및 균열폭에 따른 부식된 철근과 콘크리트 계면의 부착-미끄러짐 거동 )

  • Sang-Hyeon Jo;Seong-Hoon Kee;Jung-Jae Yee;Changkye Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.54-63
    • /
    • 2023
  • In this paper, the effect of corrosion level and crack width on the cohesive strength-slip behavior of corroded steel rebar and concrete interface is conducted. The existing studies mainly focus on the decrease in bond strength with respect to the level of corrosion; there are, however, few studies on the decrease in cohesive strength according to the crack width of the concrete surface due to corrosion. Therefore, in this study, a series of tests for the cohesive strength, slip behavior and mass loss of the reinforcing bar is evaluated at the surface of corroded rebar and concrete. It is found that the tendency to decrease the bond strength is closely related to the crack width rather than the corrosion level. Hence, to determine the degradation performance for the bond strength-slip behavior relation, the occurrence of cracks on the concrete surface can be a suitable index.