• Title/Summary/Keyword: steel arch

Search Result 248, Processing Time 0.03 seconds

Development of Structural Model and Analysis of Design Factors for Small Greenhouse of Urban Agriculture (도시농업을 위한 소형온실 설계요인 분석 및 구조모델 개발)

  • Kim, Hyung-Kweon;Ryou, Young-Sun;Kim, Young-Hwa;Lee, Tae-Seok;Oh, Sung-Sik;Lee, Won-Suk;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.388-395
    • /
    • 2019
  • The purpose of this study is to suggest structural model and analyze design factors for the development of small greenhouse standardization model. The average dimensions of small greenhouse desired by urban farmers were 3.3m in width, 1.9m in eaves height, 2.7m in ridge height, 5.7m in length. The cladding materials for small greenhouse were preferred to glass, PC board and plastic film, framework to aluminum alloy and steel, and heating method in electrical energy. In addition, it was analyzed that small greenhouses need to develop structural model by dividing them into entry-level type and high-level type. The roof type that was used for entry-level type was arch shape, framework was steel pipe, cladding material was plastic film. On the other hand, high-level type was used in even span or dutch light type, framework with square hollow steel, cladding materials with glass or PC board. In consideration of these findings and practicality, this study developed four types of small greenhouses. The width, eaves height, ridges height, and length of the small greenhouses of even span type, which were covered with 5mm thick glass and 6mm thick PC board were 3m, 2.2m, 2.9m, and 6m, respectively. The small greenhouse of dutch light type covered with 5mm thick glass was designed with 3.8m in with, 2.2m in eaves height, 2.9m in ridges height, and 6m in length. The width, eaves height, ridges height, and length of the arch shape small greenhouse covered with a 0.15mm PO film were 3m, 1.5m, 2.8m, and 6m, respectively.

A study on the field tests and development of quantitative two-dimensional numerical analysis method for evaluation of effects of umbrella arch method (UAM 효과 평가를 위한 현장실험 및 정량적 2차원 수치해석기법 개발에 관한 연구)

  • Kim, Dae-Young;Lee, Hong-Sung;Chun, Byung-Sik;Jung, Jong-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2009
  • Considerable advance has been made on research on effect of steel pipe Umbrella Arch Method (UAM) and mechanical reinforcement mechanism through numerical analyses and experiments. Due to long analysis time of three-dimensional analysis and its complexity, un-quantitative two-dimensional analysis is dominantly used in the design and application, where equivalent material properties of UAM reinforced area and ground are used, For this reason, development of reasonable, theoretical, quantitative and easy to use design and analysis method is required. In this study, both field UAM tests and laboratory tests were performed in the residual soil to highly weathered rock; field tests to observe the range of reinforcement, and laboratory tests to investigate the change of material properties between prior to and after UAM reinforcement. It has been observed that the increase in material property of neighboring ground is negligible, and that only stiffness of steel pipe and cement column formed inside the steel pipe and the gap between steel pipe and borehole contributes to ground reinforcement. Based on these results and concept of Convergence Confinement Method (CCM), two dimensional axisymmetric analyses have been performed to obtain the longitudinal displacement profile (LDP) corresponding to arching effect of tunnel face, UAM effect and effect of supports. In addition, modified load distribution method in two dimensional plane-strain analysis has been suggested, in which effect of UAM is transformed to internal pressure and modified load distribution ratios are suggested. Comparison between the modified method and conventional method shows that larger displacement occur in the conventional method than that in the modified method although it may be different depending on ground condition, depth and size of tunnel, types of steel pipe and initial stress state. Consequently, it can be concluded that the effect of UAM as a beam in a longitudinal direction is not considered properly in the conventional method.

Evaluation of Longitudinal Steel Tension in Shear-Critical RC Beams (전단이 지배하는 RC 보의 주철근 인장력 산정)

  • Jeong, Jae-Pyong;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.252-255
    • /
    • 2004
  • The measured longitudinal reinforcement tensions in the shear-critical RC beams were significantly higher than the calculated values by the beam theory. This may be attributed to the reduction of the internal-moment arm length by the development of the arch action. In this paper, the measured longitudinal reinforcement tensions in the test performed by $Kim^4$ were compared with those predicted by the various truss model.

  • PDF

Concepts on Deformation Dependent Strut-and-Tie Models (변형을 고려한 스트럿-타이 모델)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.209-212
    • /
    • 2005
  • This paper presents, basic concepts on deformation models for D-regions critical to shear. Strut-and-tie models are used to construct for deformation estimation at yielding and ultimate deformation. A generic: strut-and-tie model is proposed to investigate deformation patterns and failure mode identification. Superposition of the basic models enables us to explain deformation limits of arch action and truss action. Displacement at yielding is assessed by consideration of deformation of reinforcing steel only while the ultimate displacement is calculated by limits of ultimate strain of concrete in compression and failure mechanisms.

  • PDF

Predictoin of Longitudinal Steel Tension for Shear-Critical Reinforced Concrete Beams with Stirrups (전단이 지배하는 철근콘크리트 보의 주철근 인장력 산정)

  • Rhee, Chang-Shin;Byun, Su-Min;Shin, Geun-Ok;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.374-377
    • /
    • 2006
  • The measured longitudinal reinforcement tensions in the shear-critical RC beams were significantly higher than the calculated values by the beam theory. This may be attributed to the reduction of the internal-moment arm length by the development of the arch action. In this paper, the measured longitudinal reinforcement tensions in the test performed by Kim were compared with those predicted by the new truss model on the basis of the compatibility condition of the shear deformation.

  • PDF

New Austrian Tunneling Method (일본의 NATM시공)

  • Toyoki Kadoya
    • Explosives and Blasting
    • /
    • v.9 no.4
    • /
    • pp.22-31
    • /
    • 1991
  • NATM technic had been applied to Nakaya tunnel of Sin kan express R.R lines in 1975. on the worst expandable geological conditions, application of NATM method was carried out good result. Measurement data which include convergencymeter, inclinometer, extensometor load-cell, strain gage data of shotcrete stress and steel arch. was explained with slides. Induced NATM technic has been improved since 1975 as follows, specially adhesive method of shotcrete instead of spray method such as tunnel swift lining Sliding press lining, clean lining by pumping and sweeping tote lining ets.

  • PDF

Evaluation of the Structural Performance of Tetragonal Lattice Girders (사각 격자지보의 구조 성능 평가)

  • Kim, Seung-Jun;Han, Keum-Ho;Won, Deok-Hee;Baek, Jung-Sik;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.267-278
    • /
    • 2012
  • In general, the H-shaped steel ribs or triangular lattice girders have been mostly used in constructing tunnels through the NATM construction method. The H-shaped steel rib has higher flexural and axial strength than the triangular lattice girder, but many unexpected gaps can occur in the concrete lining system after shotcreting if the H-shaped steel rib is used as the support system. To achieve better shotcreting quality, the triangular lattice girder was developed. However, in general, the triangle lattice girder has low flexural and axial strength. Likewise, the triangular lattice girder, which has circular sectional members, has so many fractures from welded points at the joints between the members. Finally, the new type of tetragonal lattice girder was developed to overcome those problems. In this study, the structural performance of the tetragonal lattice girders was evaluated through analytical and experimental studies. In the analytical studies, the four-point bending analysis, the traditional evaluation method to determine the flexural strength of the lattice girder, was performed. Moreover, the linear-elastic analysis and stability analysis of the arch structure made by the lattice girders were performed to measure structural performance. Experiments were likewise performed to compare the structural performances of the tetragonal girder with traditional triangular lattice girders.

Rain-wind induced vibrations of cables in laminar and turbulent flow

  • Peil, U.;Dreyer, O.
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.83-97
    • /
    • 2007
  • In the last decades there have been frequent reports of oscillations of slender tension members under simultaneous action of rain and wind - characterized by large amplitudes and low frequencies. The members, e.g. cables of cable-stayed bridges, slightly inclined hangers of arch bridges or cables of guyed-masts, show a circular cross section and low damping. These rain-wind induced vibrations negatively affect the serviceability and the lifespan of the structures. The present article gives a short literature review, describes a mathematical approach for the simulation of rain-wind induced vibrations, sums up some examples to verify the calculated results and discusses measures to suppress the vibrations.

Analytical Model for CFTA Girder (CFTA 거더의 해석모델 개발)

  • Jeon, Jong-Su;Park, Seung-Jae;Kim, Yong-Jae;Park, Myoung-Gyun;Kim, Jung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.169-170
    • /
    • 2009
  • CFT structure has many advantages compared with the ordinary structural member made of steel or reinforced concrete. Because of increases in ductility, stiffness and load carrying capacity of overall structure owing to confinement effect of steel box and concrete, CFT structure is widely used to columns. Recently, the utilization of CFT member has been expanded to bridge structure as a girder member. The purpose of this study is to develop the analytical model and propose design method for CFTA girder bridge consisting of CFT structure, arch shape and tendons.

  • PDF

Nonlinear Inelastic Optimal Design Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 비탄성 최적설계)

  • 마상수;김승억
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.145-152
    • /
    • 2003
  • An optimal design method in cooperated with nonlinear inelastic analysis method is presented. The proposed nonlinear inelastic method overcomes the difficulties due to incompatibility between the elastic global analysis and the limit state member design in the conventional LRFD method. The genetic algorithm uses a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are used among sections in the database to look for high performance ones. They satisfy the constraint functions and give the lightest weight to the structure. The objective function is set to the total weight of the steel structure and the constraint functions are load-carrying capacities, serviceability, and ductility requirement. Case studies of a three-dimensional frame and a three-dimensional steel arch bridge are presented.

  • PDF