• Title/Summary/Keyword: steam stability

Search Result 167, Processing Time 0.024 seconds

The μ-synthesis and analysis of water level control in steam generators

  • Salehi, Ahmad;Kazemi, Mohammad Hosein;Safarzadeh, Omid
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.163-169
    • /
    • 2019
  • The robust controller synthesis and analysis of the water level process in the U-tube system generator (UTSG) is addressed in this paper. The parameter uncertainties of the steam generator (SG) are modeled as multiplicative perturbations which are normalized by designing suitable weighting functions. The relative errors of the nominal SG model with respect to the other operating power level models are employed to specify the weighting functions for normalizing the plant uncertainties. Then, a robust controller is designed based on ${\mu}$-synthesis and D-K iteration, and its stability robustness is verified over the whole range of power operations. A gain-scheduled controller with $H_{\infty}$-synthesis is also designed to compare its robustness with the proposed controller. The stability analysis is accomplished and compared with the previous QFT design. The ${\mu}$-analysis of the system shows that the proposed controller has a favorable stability robustness for the whole range of operating power conditions. The proposed controller response is simulated against the power level deviation in start-up and shutdown stages and compared with the other concerning controllers.

Characteristics of Flow-induced Vibration for KSNP Steam Generator Tube at Concentrated Tube Plugging Zone (한국표준원전 증기발생기의 관막음 집중 영역 근방에서의 유체유발진동 특성해석)

  • 유기완;조봉호;박치용;박수기
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.452-459
    • /
    • 2003
  • The characteristics of fluid-elastic instability and effects of turbulent excitations for the KSNP steam generator tubes were investigated numerically. The information for the thermal-hydraulic data of the steam generator has been obtained by using the ATHOS3-MOD1 code and the flow-induced vibration(FIV) analysis has been conducted by using the PIAT(program for Integrity assessment of SG tube) code. The KSNP steam generator has the concentrated plugging zone at the vicinity of the stay cylinder inside the SG. To investigate the cause of the concentrated tube plugging zone, the FIV analysis has been performed for various column and row number of the steam generator tubes. From the results of FIV analysis the stability ratio due to the fluid-elastic instability and vibrational amplitude due to the turbulent excitation in the concentrated plugged zone have a trend of larger values than those of the outer concentrated tube Plugging zone.

Flow-induced Vibration of the CE-type Steam Generator Tube (CE형 원전 증기발생기 전열관의 유동유발진동 해석)

  • Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.828-833
    • /
    • 2001
  • In this study, an analysis tool to assess the susceptibility of steam generator tubes due to the flow-induced vibration was developed. The fluid-elastic instability analysis of the U-tube bundle for CE-type steam generator was accomplished. The effective mass distribution along the U-tube was obtained to calculate the natural frequency and dynamic mode shape. Finally, stability ratios for selected tubes are obtained.

  • PDF

Robust $H_{\infty}$ Controller Design for Steam Generator Water Level Control using Mixed $H_{\infty}$ Optimization Method (혼합 $H_{\infty}$ 최적화 기법을 이용한 견실 $H_{\infty}$ 증기발생기 수위제어기 설계)

  • 서성환;조희수;박홍배
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.363-369
    • /
    • 1999
  • In this paper, we design the robust $H_{\infty}$ controller for water level control of steam generator using a mixed $H_{\infty}$ optimization with model-matching method. Firstly we choose the desired model which has good disturbance rejection performance. Secondly we design a stabilizing controller to keep the model-matching error small and also provide sufficiently large stability margin against additive perturbations of the nominal plant. Simulation results show that proposed robust $H_{\infty}$ controller at specific power operation has satisfactory performances against the variations of load power, steam flow rate, primary circuit coolant temperature, and feedwater temperature. It can be also observed that the proposed robust $H_{\infty}$ controller exhibits better robust stability than conventional PI controller.

  • PDF

Study on Properties of EPP Bead Foam (EPP 비드폼의 특성에 관한 연구)

  • Jung, Dong-Won;Lee, Eung-Kee;Park, Chul-B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.991-997
    • /
    • 2011
  • This paper deals with the basic principles and procedures involved in the steam-chest molding process used for manufacturing expanded polypropylene (EPP) bead foam. Steam-chest molding is an integral process for EPP technology. However, little research has been carried out on the processing conditions for steam-chest molding this process. The characteristics of EPP foam are energy absorption, multiple-impact protection, low weight, structural strength, and durability. In this study, the steam pressure in steam-chest molding was varied to determine the optimum conditions for manufacturing EPP foam. Moreover, annealing was performed after EPP-foam molding to prevent the shrinkage of the steam-molded product. It was possible to verify the mechanism of foam shrinkage by observing the change in weight with time at different annealing temperatures. Moreover, a tensile test and scanning electron microscopy (SEM) analysis were performed to support these experimental results. The dimensional stability of each molded product was investigated at different steam pressures.

A Development of Digital Control System for FWPT In Nuclear Power Plant (원전 급수펌프 구동용 터빈 제어시스템 개발)

  • Choi, In-Kyu;Jeong, Chang-Ki;Kim, Byoung-Chul;Kim, Jong-An;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1885-1886
    • /
    • 2006
  • The thermal energy from nuclear fission is transferred to the steam generator which is a kind of a large heat exchanger. After the feedwater is injected into the steam generator and absorbs the thermal energy, it is converted into the steam. This steam goes into the turbine. The balance between the generated energy and the consumed energy is required for the nuclear power plant to be stable. For the purpose of which, the feed water, a parameter for energy transfer, should be controlled in stability. Usually, the nuclear power plants are operated in base load in the view of power system for the stability of fission system. Therefore, though there will be almost no unbalance, there can be some instability from unbalance in case of startup/shutdown or disturbance. In this case, the controllability of feedwater pump is very important for the quick recover of stability.

  • PDF

A Model Predictive Controller for The Water Level of Nuclear Steam Generators

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.102-110
    • /
    • 2001
  • In this work, the model predictive control method was applied to a linear model and a nonlinear model of steam generators. The parameters of a linear model for steam generators are very different according to the power levels. The model predictive controller was designed for the linear steam generator model at a fixed power level. The proposed controller at the fixed power level showed good performance for any other power levels by designed changing only the input-weighting factor. As the input-weighting factor usually increases, its relative stability does so. The steam generator has some nonlinear characteristics. Therefore, the proposed algorithm has been implemented for a nonlinear model of the nuclear steam generator to verify its real performance and also, showed good performance.

  • PDF

Effects of Steam Treatment on Physical and Mechanical Properties of Bamboo Oriented Strand Board

  • Maulana, Sena;Busyra, Imam;Fatrawana, Adesna;Hidayat, Wahyu;Sari, Rita Kartika;Sumardi, Ihak;Wistara, I Nyoman Jaya;Lee, Seung Hwan;Kim, Nam Hun;Febrianto, Fauzi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.872-882
    • /
    • 2017
  • The objective of this study was to evaluate the properties of bamboo oriented strand board (B-OSB) from andong (Gigantochloa psedoarundinacea) and betung (Dendrocalamus asper) with and without steam treatment. Strands were steam-treated at $126^{\circ}C$ for 1 h under 0.14 MPa pressure. The extractive content of bamboo strands before and after steam treatment were determined according to a standard (TAPPI T 204 om-88). Three-layer B-OSB with the core layer perpendicular to the surface and back layers were formed and binded with 8% of phenol formaldehyde (PF) resin with the addition of 1% of wax. The evaluation of physical and mechanical properties of the boards were conducted in accordance with the JIS A 5908:2003 standard. The results showed that steam treatment of bamboo strands significantly reduced the extractive content. Steam treatment tended to increase the dimensional stability and mechanical properties of B-OSB from andong and betung. The results showed that the dimensional stability and bending strength of B-OSB from betung was higher than those of andong. The internal bond strength of B-OSB from andong was higher than betung owing to a greater amount of extractives dissolved during the steam treatment.

The Effect of Various Processing Conditions on Temperature Distribution in Steam-air Retort (스팀-에어 레토르트의 온도분포에 미치는 공정 변수 영향)

  • Lee, Sun-Young;Shin, Hae-Hun;In, Ye-Won;Cho, Hyung-Yong
    • Food Engineering Progress
    • /
    • v.23 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • Temperature distribution studies were performed in steam-air retort to investigate the influence of various processing conditions (come-up time, sterilization temperature, and internal pressure throughout the steam-air retort). Retort temperature data were analyzed for temperature deviations during holding phase, maximum temperature difference between test locations at the beginning and after 1, 3, and 5 min of the holding phase, and box-and-whiskers plots for each location during the holding phase. The results showed that high sterilization temperature led to a more uniform temperature distribution than low sterilization temperature (pasteurization). In pasteurization condition, the temperature stability was slightly increased by increasing pressure during the holding phase. On the other hand, the temperature stability was slightly decreased in high sterilization temperature condition. Programming of the come-up phase did not affect the temperature uniformity. In addition, the slowest cold spot was found at the bottom floor during the holding phase in all conditions. This study determined that the temperature distribution is affected by retort processing conditions, but the steam-air retort needs more validation tests for temperature stability.

Studies on the Production of Hydrogen by the Steam Reforming of Glycerol Over NI Based Catalysts (NI계 촉매상에서 글리세롤의 수증기 개질반응(Steam Reforming)에 의한 수소제조 연구)

  • Hur, Eun;Moon, Dong-Ju
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.493-499
    • /
    • 2010
  • Steam reforming (SR) of glycerol, a main by-product of manufacturing process of bio-diesel, for the production of hydrogen was investigated over the Ni-based catalysts. The Ni-based catalysts were prepared by an impregnation method, and characterized by $N_2$ physisorption, CO chemisorption, XRD and TEM techniques. It was found that the Ni/${\gamma}-Al_2O_3$ catalyst showed higher conversion and catalytic stability for the carbon formation than the other catalysts in the steam reforming of glycerol under the tested conditions. The results suggest that the steam reforming of glycerol over modified Ni/${\gamma}-Al_2O_3$ catalyst minimized carbon formation can be applied in hydrogen station for fuel-cell powered vehicles and fuel processor for stationary and portable fuel cells.