DOI QR코드

DOI QR Code

The Effect of Various Processing Conditions on Temperature Distribution in Steam-air Retort

스팀-에어 레토르트의 온도분포에 미치는 공정 변수 영향

  • Lee, Sun-Young (Department of Food Science and Biotechnology, CHA University) ;
  • Shin, Hae-Hun (Division of Foodservice Industry, Baekseok Culture University) ;
  • In, Ye-Won (Department of Food Science and Biotechnology, CHA University) ;
  • Cho, Hyung-Yong (Department of Food Science and Biotechnology, CHA University)
  • 이선영 (차의과학대학교 식품생명공학과) ;
  • 신해헌 (백석문화대학교 외식산업학부) ;
  • 인예원 (차의과학대학교 식품생명공학과) ;
  • 조형용 (차의과학대학교 식품생명공학과)
  • Received : 2019.02.14
  • Accepted : 2019.03.30
  • Published : 2019.05.31

Abstract

Temperature distribution studies were performed in steam-air retort to investigate the influence of various processing conditions (come-up time, sterilization temperature, and internal pressure throughout the steam-air retort). Retort temperature data were analyzed for temperature deviations during holding phase, maximum temperature difference between test locations at the beginning and after 1, 3, and 5 min of the holding phase, and box-and-whiskers plots for each location during the holding phase. The results showed that high sterilization temperature led to a more uniform temperature distribution than low sterilization temperature (pasteurization). In pasteurization condition, the temperature stability was slightly increased by increasing pressure during the holding phase. On the other hand, the temperature stability was slightly decreased in high sterilization temperature condition. Programming of the come-up phase did not affect the temperature uniformity. In addition, the slowest cold spot was found at the bottom floor during the holding phase in all conditions. This study determined that the temperature distribution is affected by retort processing conditions, but the steam-air retort needs more validation tests for temperature stability.

공기 주입식 스팀-에어 레토르트 내에서 스팀온도, 내부가압, CUT 등의 공정변수가 레토르트 내부의 온도 균일성에 미치는 영향을 평가하였다. 고온살균(121℃)이 저온살균(82℃) 보다 공정구간동안 온도분포가 더 균일하고 안정적이었다. 내부 가압이 클수록 저온살균조건의 공정에서는 온도분포가 안정적이었고, 이와 반대로 고온살균조건의 공정에서 온도분포가 더 불균일한 것으로 나타났다. 승온구간을 조절한 경우에는 레토르트 내의 온도분포에는 유의적인 차이를 나타내지 않았다. 공정구간동안 레토르트 내부에서 냉점은 수직방향 1층의 위로 확인되었고, 수평방향에서는 맨 뒤쪽 중앙 부분이 가장 높은 온도를 유지하여 공정 동안 이 위치들을 주의를 할 필요가 있었다. 또한 레토르트 내부의 양 옆 위치가 다른 위치에 비해 특히 온도분포가 불안정한 것으로 확인되었으므로 레토르트 가공 공정에서 주의해야 할 것으로 판단되었다.

Keywords

References

  1. Berteli MN, Vitali AA, Marsaioli A, Berto MI. 2012. The analysis of an alternative approach to the venting process in retort operating under steam pressure. J. Food Eng. 109: 388-398. https://doi.org/10.1016/j.jfoodeng.2011.11.014
  2. Chamchong M, Sangsonm V, Charoeamkitti N. 2011. ComputerBased On-Line Assessment of Sterilizing Value and Heat Distribution in Retort for Canning Process. In: Food Industrial Processes-Methods and Equipment. InTechOpen, Rijeka, Croatia. pp. 379-400.
  3. Chung MS, Ahn TH, Lee YG, Yoo MY. 1995. Temperature Distribution in Water Cascading Horizontal Retort. Korean J. Food Sci. Technol. 27: 827-833.
  4. FDA. Food and Drug Administration. Processing in Steam-Air Retorts (FDA form 3511h). Available from: http://www.fda.gov. Accessed Sep. 2014.
  5. Han KS. 2006. Treatment apparatus for steam sterilization. Korea patent No. 1,00,832,031.
  6. IFTPS. 2014. Institute for Thermal Processing Specialists. Guidelines for conducting thermal processing studies. Available from: http://www.iftps.org. Accessed Mar. 13. 2014.
  7. Kim JH, Yoon WB. 2016. The effect of temperature distribution in the retort on the degree of sterilization and the quality of potato. Food Eng. Prog. 20: 240-246. https://doi.org/10.13050/foodengprog.2016.20.3.240
  8. Kumar A, Bhattachary M. 1991. Transient temperature and velocity profiles in a canned non-Newtonian liquid food during sterilization in a still-cook retort. Int. J. Heat Mass Transfer. 34: 1083-1096. https://doi.org/10.1016/0017-9310(91)90018-A
  9. NFPA. 1985. Guidelines for thermal process development for food packaged in flexible containers. National Food Processor's Association, Washington, USA.
  10. Otto N, Amman S, Eaton C, Lake, S. 1999. Guidelines for jury evaluations of automotive sounds. SAE Paper No. 1999-01-1822. In: Proceeding of SAE Noise and Vibration Conference, Michigan, USA.
  11. Pyun YR, Kwon YJ, Kim BY, Park JY, Sin HH, Lee DS, Lee SY, Lee JH, Lee HY, Lim JH, Chung MS, Cho HY, Choi YH, Hwang JK. 2014. Food Process Engineering, Jigu Publishing Co., Paju, Korea, p. 267.
  12. Ramaswamy HS. 1983. Heat Transfer Studies of Steam/Air Mixtures for Food processing in Retort Pouch. Ph.D. thesis, University of British Columbia, Vancouver, Canada
  13. Shin HH, Kim YJ, Cho WI, Choi JB, Choi WD. 2003. Development of a computer program predicting sterilization effects on target microorganisms. Korean J. Food Nutr. 16: 180-186.
  14. Singh AP, Singh A, Ramaswamy HS. 2015. Modification of a static steam retort for evaluating heat transfer under reciprocation agitation thermal processing. J. Food Eng. 153: 63-72. https://doi.org/10.1016/j.jfoodeng.2014.12.001
  15. Smout C, Van Loey A, Hendrickx M. 2001. Role of temperature distribution studies in the evaluation and identification of processing conditions for static and rotary water cascading retorts. J. Food Eng. 48: 61-68. https://doi.org/10.1016/S0260-8774(00)00146-1
  16. Smout C, Van Loey AML, Hendrickx MEG. 2000. Non-uniformity of lethality in retort processes based on heat distribution and heat penetration data. J. Food Eng. 45: 103-110. https://doi.org/10.1016/S0260-8774(00)00046-7
  17. Varga S, Oliveira JC, Smout C, Hendrickx ME. 2000. Modelling temperature variability in batch retorts and its impact on lethality distribution. J. Food Eng. 44: 163-174. https://doi.org/10.1016/S0260-8774(00)00021-2
  18. Varga S, Oliveira JC, Smout C, Hendrickx ME. 2001. Temperature distribution analysis of a water cascading retort in rotary and static modes. Int. J. Food Sci. Technol. 36: 551-562. https://doi.org/10.1046/j.1365-2621.2001.00485.x