• Title/Summary/Keyword: steam and hot water supply

Search Result 9, Processing Time 0.017 seconds

A Study on the Transition & Expectation through Survey for Existing Building and Engineer's Opinion (기존 사무소 건물 및 설비전문가 조사를 통한 설비시스템의 변화와 전망에 대한 연구)

  • Lee, Gwan-Ho;Kim, Nam-Gyu;Park, Jin-Chul;Rhee, Eon-Ku
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.63-69
    • /
    • 2005
  • This study is the survey of a transition procedure of building services systems(heat source, HVAC, water supply) through the survey of existing office buildings, building design documents. The preference & major consideration of system selection is the engineer's opinions. The results of this survey can be used in selection of building services system design. In this survey, "Hot & cold water generator system" and "single duct CAV+FCU system", "Elevated water tank system" are selected. The most important consideration in system selection is the energy saving in heat source system, and comfort in HVAC system, and water pressure in water supply system. They prefer "steam boiler+absorption chiller system" for heat source system, "steam boiler+ice thermal storage system", "hot & cold water generator system", "district heating+absorption chiller system" : "single duct CAV+FCU system" and "single duct VAV+convector system" for HVAC system: and "booster pump system" for water supply system.

Effects of Operation Conditions on the Performance of Type II LiBr-H2O Absorption Heat Pump (제 2종 LiBr-H2O 흡수식 히트펌프의 운전 변수에 따른 성능 특성 수치 해석)

  • Yoon, Jun Seong;Kwon, Oh Kyung;Cha, Dong An;Bae, Kyung Jin;Kim, In Gwan;Kim, Min Soo;Park, Chan Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • This study carried out a numerical analysis of the effects of hot waste water supply on the performance of a Type II absorption heat pump. There are two types of hot waste water supply, regular series flow and reverse series flow. Also it investigated the interaction between each type of flow and heat exchange solutions. As the effectiveness of heat exchange solutions increase, the steam generation and (COP) increase as well. If the effectiveness of a heat exchange solution is lower than 0.566, the steam generation rate of the reverse flow is lower than that of the regular series flow. A high effectiveness of heat exchange solution is therefore required to make a larger amount of steam in reverse series flow than with ordinary series flow. The COP difference between the two types of flow decreases with the increasing effectiveness of the heat exchange solution. Thus, a reverse flow type absorption heat pump can match the high steam generation rate and COP of the ordinary flow type when a highly effective heat exchange solution is applied.

A Study on the Incentive-based Strategies for Utilization of Thermoelectric Power Plant Hot Waste Water: Focusing on the Analysis of Levelized Cost of Energy(LCOE) (발전소 온배수열 활용사업의 경제적 유인제도 연구 : 에너지균등화비용(LCOE) 분석을 중심으로)

  • Nam, Tae-Sub;Lee, Kwan-Young;Kim, Kyung Nam
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.29-42
    • /
    • 2016
  • This study analyzes the economic efficiency of utilizing hot waste water at a thermoelectric power plant, which is part of recent projects supported by the Korean government to foster new energy industry. The author proposes an institution that provides economic incentives to promote the project. Based on a method of calculating Levelized cost of energy (LCOE), this study finds that the LCOE of using hot waste water at power plants is higher than that of oil boiler, biomass and a power plant's auxiliary steam but similar to that of the geothermal system. Also, according to sensitivity analysis on the LCOE of each element in the system of using hot waste water, a distance of heat supply is most sensitive. Therefore, this study shows that when the government devises an incentive-based institution to expand the project of utilizing hot waste water, it is necessary to establish Renewable Energy Certificate (REC) weights that are differentiated by a distance of heat supply.

Heat Recovery from a 1 MW Class Gas Engine CHP System: 100 kW Class Model Test (온수, 증기 동시 발생형 가스엔진 열병합발전의 배열회수 특성: 100 kW급 모형 실험)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung;Song, Dae-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.345-350
    • /
    • 2008
  • The present study has been conducted to develop a heat recovery system for a 1 MW class gas engine based cogeneration system. In the cogeneration system, heat is recovered from two parts, which are jacket water and exhaust gas. The heat from the jacket water is recovered by a plate type heat exchanger and used for the room heating and/or hot water supply. The heat from the exhaust gas is used to generate steam. For both of the heat recovery devices, 1/5 scaled tests are performed and the data are compared to the conventional correlations for the design.

  • PDF

Characteristics Evaluation of Absorption Cycles using the Waste Heat (배열 이용형 흡수식 사이클 특성평가)

  • Yoon, J.I.;Kwon, O.K.;Moon, C.G.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.23-32
    • /
    • 1998
  • Fuel cells supply electric power and heat at work, and their exhaust gas is comparatively clear. So they are in the limelight as one of the co-generation systems which behave friendly with the environment. Fuel cells discharge both steam and hot water. Accordingly, if we combine absorption heat pump driven by waste heat with fuel cells, we can construct an advanced energy conserving system. The purpose of this study is the objective for evaluating the possibilities of effectively utilizing waste heat of fuel cells as a heat source for the single and double effect absorption systems. Simulation studies on single and double effect absorption have been performed for water/lithium-bromide pair. The effectiveness of introducing a waste heat source of fuel cells is demonstrated. The result of this study showed that total efficiency was about 85% at rated operation and about 75% at 75% load operation. Absorption cycle moved to more strong concentration when fuel cell operated at 75% load.

  • PDF

Optimization of the Community Energy Supply System for D-Cube City, Multi Purpose Building (복합건물(D-Cube City) 지역에너지 공급체계 최적화)

  • Lee, Tae-Won;Kim, Yong-Ki;Lee, Kun-Woo;Lee, Ki-Bong;Cho, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.669-674
    • /
    • 2012
  • D-Cube City is a recently completed multi purpose building consisting of four types of facilities; offices, a department store, a hotel, and congregation spaces. A community energy supply system(CES) has been installed to supply this building with electricity, steam, heat, and cold water. The BEMS, building energy management system, is currently being designed to reduce building energy consumption through the efficient operation of the various pieces of building service equipment. In this study the optimal methods for operating the CES of D-Cube City were considered. This system includes three combined heat and power systems, seven steam boilers, two hot water boilers, two absorption chillers, and four turbo chillers, and various other pieces of equipment. In result, the optimal methods of operating the CES for various energy demand levels were obtained along with the seasonal effects on the economic efficiency of the operation. The effect of the amount of energy demanded by the various facility areas on the total energy consumption was also analyzed.

The Economic Effects of Integrated-Energy Business : An Input-Output Analysis (집단에너지산업의 국민경제적 파급효과 분석)

  • Han, Kun-Taik;Kim, Hye-Min;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Korean government has initiated integrated-energy business (IEB) in Mokdong for energy conservation in 1983. Since then, IEB has been steadily expanding. This paper attempts to apply input-output(I-O) analysis to examine the economic effects of IEB. A static I-O framework is employed, focusing on three topics in its application: the impact of the investment of IEB on the production of other sectors and the inter-industry linkage effect; supply shortage effects of the IEB ; and the impact of the rise in IEB rate on prices of other products. The paper pays closer attention to IEB sector by taking the sector as exogenous and then investigating its economic impacts. The results can be widely utilized in decision-making about IEB policy.

Analyzing the impact of increase in energy price on the general price level (에너지원별 가격조정의 물가파급효과 분석)

  • Lim, Seul-Ye;Song, Tae-Ho;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.376-385
    • /
    • 2013
  • There are conflicts about energy price increase among government, producer, and consumer. The supplier insists on price increase for escaping running a deficit and business continuity, but the consumer concerns about worsening profitability and price rise. This study investigates the effects of energy rate increase on national economy using input-ouput(I-O) analysis. This study attempts to analyze the effects of national economy due to Coke and hard-coal, Naphtha, Gasoline, Kerosene, Light oil, Heavy oil, Liquefied petroleum gas, Electric utilities, Manufactured gas supply and Steam and hot water supply (using input-output table for the year 2011, Korea.) The results of the sectoral price changes due to a 10% increase in energy price that is obtained from the Leontief price model are presented in article. The result of this analysis is presented: The impact of the 10% increase in electricity rate on the general price level is estimated to be 0.2196%. In case of Kerosene, the impact is 0.1222%. It shows that Electric utilities are approximately 18 times larger price inducing effect as Kerosene. Also, this study indicates 3 years results sequentially to make it possible to observe trend. Then, study suggests balancing price by making each energy source adjusted.

CO2 Emission Structure Analysis of Industrial Sector with Environmental Input-Output Table 2005 (환경산업연관표 2005를 이용한 산업부문의 이산화탄소(CO2) 배출 분석)

  • Kim, Yoon Kyung
    • Environmental and Resource Economics Review
    • /
    • v.20 no.1
    • /
    • pp.1-31
    • /
    • 2011
  • By employing Environmental Input-Output Table 2005, which has 76 intermediate sector and 21 energy sources, this paper analyses the flow of energy demand and $CO_2$ after estimating an induced $CO_2$ emissions from 76 industrial sectors. Index of $CO_2$ intensity($CO_2/GDP$) and other index of $CO_2$ intensity($CO_2/calory$) showed that final demand sector uses more high calory energy source. Intermediate sector used less environmental friendly energy source and emit more $CO_2$ at same calory. Industries those has high induced $CO_2$ emissions are Thermal Power($32.587CO_2-g/Won$), Cement($10.370CO_2-g/Won$), Road Transportation($7.255CO_2-g/Won$), Cokes and Other Coal Products($5.791CO_2-g/Won$), Steam and Hot water supply, Sewage, Sanitary services($4.575CO_2-g/Won$). It is shown that industry such as Iron and Steel which has low $CO_2$ intensity, high backward linkage effect and high forward linkage effect makes high induced $CO_2$ emissions. Environmental load and $CO_2$ emissions in overall economy will decrease when not high $CO_2$ intensity industry but also low $CO_2$ intensity industry makes lower $CO_2$ intensity.

  • PDF