• Title/Summary/Keyword: steady shear properties

Search Result 74, Processing Time 0.028 seconds

Rheological Characteristics of Nitromethane Gel Fuel with Nano/Micro Size of SiO2 Gellant (SiO2계열 젤화제 입자크기에 따른 니트로메탄 젤 추진제의 유변학적 특성 연구)

  • Jang, Jinwu;Kim, Sijin;Han, Seongjoo;Kim, Jinkon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.456-461
    • /
    • 2017
  • In this study, the rheological properties of nitromethane gel propellants on nano/micron sized gelling agent are investigated. Silicon dioxide is used as the gellant with 5 wt%, 6.5 wt% and 8 wt% concentration, respectively, where the measurements are conducted under steady-state shear flow conditions using a rotational rheometer. The nitromethane/silicon dioxide gel showed non-Newtonian flow behavior for the entire experimental shear rate ranges. The gel fuels with nano-sized gellant had a slightly higher viscosity than the gel fuels with micron-sized one for low shear rate range. Additionally, it was found that Herschel-Bulkley model can hardly describe the rheological behavior of nitromethane gel propellant, but the NM model(by Teipel and Forter-Barth) is better suited to explain the rheological behavior of nitromethane gel propellant.

  • PDF

Experimental Study on the Hygrothermal Ageing Effect to the Strength of CFRP Materials for Marine Leisure Boat (열수노화 조건에서 레저선박용 탄소섬유강화플라스틱의 강도변화에 관한 실험적 연구)

  • Jeong, Han Koo;Noh, Jackyou
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.205-214
    • /
    • 2018
  • This paper deals with the experimental study on the hygrothermal ageing effect to the strength of Carbon Fiber Reinforced Plastics (CFRP) materials for marine leisure boat manufactured by vacuum assisted resin infusion method. The experiments performed consist of tensile, flexural and shear tests according to American Society for Testing and Materials (ASTM) and Korean Industrial Standards (KS) test methods. Test coupons are varied from uni-directional(UD, $0^{\circ}$, $90^{\circ}$), Bi-Directional (BD), and Double-Bias (DB) carbon fiber fabrics in conjunction with epoxy resin. The results of tensile test show that tensile strength reduces significantly while not the same degree of reduction is observed for elasticity modulus with respect to the existence of hygrothermal ageing effect. This implies that the tensile strain induced from external load holds steady values but ultimate strength values change widely under hygrothermal ageing effect. In case of the flexural test, $0^{\circ}$ UD shows more strength reduction than $90^{\circ}$ UD while BD has reduced values in both flexural strength and elasticity modulus under hygrothermal ageing effect. It is learned that the bending strain induced from external load and ultimate strength values are reduced with respect to hygrothermal ageing effect. Shear test performed only on DB materials, and the results show marginal reduction in ultimate strength and moderate reduction in elasticity modulus. This means that the shear strain varies more than ultimate shear strength with respect to hygrothermal ageing effect. The experiment conducted in this paper clearly demonstrates the differences in material properties of the CFRP for the consideration of hygrothermal ageing effect. Findings obtained from this experimental study can serve as a fundamental input data for the realistic structural responses of marine leisure boat built in CFRP materials.

Mechanical Properties of Barley Starch Gels (보리전분젤의 역학적 성질)

  • Lee, Shin-Young;Kim, Kwang-Joong;Lee, Sang-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.215-220
    • /
    • 1986
  • Mechanical properties of 9-30% starch gels from naked and covered barley were investigated with rheometer or rotation viscosimeter. The compression-penetration curves of 20 and 30% gels were characterized by deformations containing elastic, plastic and fracture regions under the load of 0-2kg. The compressive stress relaxation test showed that the viscoelastic properties of 20% gels may be represented by four element Maxwell model consisting of two Maxwell element in parallel. Also, stress-decay under the steady shear of 9% covered starch gel was able to be interpreted by linear viscoelastic model and stress-decay process was suggested to be effective to investigate the effect of temperature or additives on gel structure.

  • PDF

Rheological Properties of Sweet Potato Starch-sucrose Composite (고구마전분-sucrose 복합물의 레올로지 특성)

  • Cho, Sun-A;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.184-189
    • /
    • 2008
  • Effects of sucrose at different concentrations (0, 10, 20, and 30%, w/w) on steady and dynamic shear rheological properties of sweet potato starch (SPS) paste (5%, w/w) were investigated. The steady shear rheological properties of SPS-sucrose composites were determined from rheological parameters based on power law and Casson flow models. At 25$^{\circ}C$ all the samples showed pseudoplastic and thixoropic behavior with high yield stress. Consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$) values of SPS-sucrose composites decreased with increasing sucrose concentration from 10% to 30%. The decrease of swelling power was observed at higher sucrose concentration (>20%) and the low swelling power yielded a lower K, ${\eta}_{a,100}$, and ${\sigma}_{oc}$ values. In temperature range of 25-70$^{\circ}C$, Arrhenius equation adequately assessed variation with temperature. Oscillatory test data showed weak gel-like behavior. Magnitudes of storage (G') and loss (G") moduli increased with an increase in sucrose concentration and frequency. The SPS-sucrose composite at 30% concentration closely followed the Cox-Merz superposition rule.

Physicochemical, Structural, and Rheological Properties of New Domestic Potato Cultivars (국산 신품종 감자의 이화학적, 구조적 및 유변학적 특성)

  • Choi, Moonkyeung;Lee, Jungu;Jin, Yong-Ik;Chang, Dong-Chil;Kim, Misook;Lee, Youngseung;Chang, Yoon Hyuk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.608-615
    • /
    • 2017
  • The objective of this study was to evaluate the physicochemical, structural, and rheological properties of new domestic potato cultivars ('Goun', 'Sebong', and 'Jinsun') against the foreign potato cultivar 'Atlantic'. Based on the results obtained from scanning electron micrograph, X-ray, and Fourier transform infrared spectrum analyses, the structural properties of all potato flours were not considerably different. Rapid visco analyzer analyses showed that the setback viscosities of 'Goun', 'Sebong', and 'Jinsun' were significantly lower than that of 'Atlantic'. For steady shear rheological properties, potato flour dispersions showed shear-thinning behaviors (n=0.45~0.49) at $25^{\circ}C$. Apparent viscosity and consistency index of 'Atlantic' were similar to those of 'Sebong' and 'Jinsun'. For dynamic shear rheological properties, storage modulus (G′) and loss modulus increased, whereas complex viscosity (${\eta}^*$) was reduced with increasing frequency from 0.63 to 62.8 rad/s. G′ and ${\eta}^*$ values of 'Jinsun' were significantly higher than those of the other potato cultivars.

An Experimental Study on the Flow Pattern in the Vicinity of Pressure Measuring Hole of the Viscoelasitc Fluids (점탄성유체의 압력측정용 벽공부근의 유동모양에 관한 실험적 연구)

  • 김춘식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 1980
  • The fluid static pressure has been generally measured by means of a small hole leading to a measuring instrument. In case of viscoelastic fluids, however, it has been shown experimentally that a systematic error exists in measuring the static pressure by means of the small hole becuase viscoelasitc fluids have many properties that can not be observed in Newtonian fluids. In this paper, in order to examine the mechanism of the errors in measuring the static pressure of viscoelasitc fluids, flow patterns in the vicinity of static pressure measuring hole were photographically taken and observed graphically. The experiments to take photographs of flow patterns were performed by a parallel plate channel with the steady two-dimensional shear flow of viscoelastic fluids. Results of the experiment are classified as following three regions; (1) Arched symmetrical flow pattern region. (2) Asymmetrical flow pattern region. (3) Rectilinear symmetricl flow pattern region.

  • PDF

Development of Real-time Monitoring Device ($\textrm{JELLI}^{TM}$ chip) for Phase Inversion of Emulsions Under Shear Flow (전단응력 하에서 에멀젼 상 변이의 실시간 측정을 위한 전기 유변학적 연구)

  • 백승재;이영진;남윤정;김진한;김한곤;강학희
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.59-62
    • /
    • 2004
  • To know what happens to the internal structure of emulsions under high shear flow is very important for cosmetic product development because it is highly relevant to the physical degradation of emulsions during the application upon the skin. Here, in order to investigate the response of emulsions against the external shear forces, we designed a new device, .JELLI$^{TM}$ (Joint Electro-rheometer for Liquid-Liquid Inversion) chip, for the measurement of electrical and rheological properties of emulsions under shear flow. By using this device, we examined the real-time changes in conductivities of oil-in-water (O/W) and water-in-oil (W/O) emulsions on the artificial skin during large deformation under shear flow. In this study, O/W and W/O emulsions having various volumes were prepared. After emulsions were homogeneously applied on the artificial skin, the electrical resistance and viscosity changes were monitored under steady shear flow. In case of O/W emulsions, the resistance increased as a function of time. The resistance showed more dramatic increase as the increase of the internal oil phase. It was also found that the viscosity change was proportional to the resistance variation. This phenomenon might be caused by decreased resisting forces against the shear flow because of the breakdown of the internal phase.the internal phase.

Physicochemical and Sensory Properties of Yogurt Supplemented with Corni fructus during Storage

  • Noh, Hyo Ju;Seo, Hye Min;Lee, Jun Ho;Chang, Yoon Hyuk
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • This study was carried out to determine a possibility of adding Corni fructus extract (CFE) into yogurt for improving the neutraceutical properties of yogurt and the effects of adding CFE (2~6%, v/v) on the physicochemical and sensory properties of the products during a 15-day storage period at $4^{\circ}C$. Incorporation of CFE into the yogurt samples resulted in a significant pH reduction and a significant increase in titratable acidity. When evaluating the color of the yogurt, the $L^*$-values were not significantly influenced by CFE supplementation; however, the $a^*$- and $b^*$-values significantly increased with the addition of CFE during storage. The power law and Casson models were applied to assess the flow behavior of CFE-added yogurt samples. The magnitudes of apparent viscosity (${\eta}_{a,100}$), consistency index (K), and yield stress (${\sigma}_{oc}$) for 4~6% CFE yogurt samples were significantly greater than those for the control, indicating that CFE can be used as a thickening agent for yogurt. The sensory test revealed that addition of CFE (2~4%) to yogurt did not significantly affect the overall scores, but the overall preference score for 6% CFE yogurt was significantly decreased. Based on the data obtained from the present study, we concluded that the concentrations (2~4%) of CFE could be used to produce a CFE-added yogurt without the significantly adverse effects on the physicochemical and sensory properties.

Effect of Mixing Shear on Flocculation of Anionic PAM and Cationic Starch Adsorbed PCC and Its Effect on Paper Properties (교반 속도가 음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘의 응집과 종이 물성에 미치는 영향)

  • Choi, Do-Chim;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.53-60
    • /
    • 2015
  • The effects of stirring speed during filler modification by dual polymers on flocculation and reflocculation of PCC (precipitated calcium carbonate) particles and its effect on handsheet properties were elucidated. PCC surface was modified by adsorbing A-PAM (anionic polyacrylamide) and C-starch (cationic starch) in series at various stirring speeds. It was found that increasing stirring speed during filler modification decreased the initial floc size of PCC. Continuous stirring with the same speed for filler modification resulted in the decrease of a floc size, eventually reached a steady state. The variations in a floc size was influenced by the stirring speed during filler modification: the lower the stirring speed during filler modification, the larger the floc size variations. Conclusively, the stability of PCC floc could be improved by increasing the stirring speed. In addition, the stirring speed influenced the handsheet properties. The smaller the PCC floc, the lower the strength of handseet. However, too much larger floc size also deteriorated paper strength. There exists an optimum floc size in term of paper strength which shall be controlled by stirring speed during filler modification.

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.575-580
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. 1'he hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_{3}$) coupling. It is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b/}$rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.f the blade.

  • PDF