• Title/Summary/Keyword: steady shear flow

Search Result 169, Processing Time 0.022 seconds

Numerical Studies of Flow Across End-to-Side Distal Vascular Bypass Graft Anastomoses

  • Kim, Y.H.;Kim, J.H.;Shin, J.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.339-352
    • /
    • 1992
  • A numerical simulation of the steady and pulsatile flow across the end-to-side anastomosis was performed In order to understand the role of flow dynamics in the preferential bevel opment of distal anastomotic intimal hyperplasla. The finite element technique was employed to solve two-dimensional unsteady pulsatile flow in that region. The results of the steady flow revealed that low shear stresses occur at the proximally occluded host artery and at the recirculation region in the Inner wall just distal to the toe region of the anastomosis. The nor- mal;zed wall shear rate was increased, as was the recirculation zone size in the host artery of the by-pass graft anastomosis, with increased anastomotic junction angle. In order to min imize the size of the low wall shear region which might result in the intimal hyperplasia in the by-pass graft anastomosis, a smaller anastomotic junction angle is recommended. The pulsatile flow simulation revealed flow that regions of low and ascillating mali shear do exist near the anastomosis as In the steady simulation. The shift of stagnation point depends on the pulsation of the flow. As the flow was accelerated at systole, the stagnation point moved downstream, disappered at early diastole and reappeared during late diastole. Low shear stress was also found along both walls of the occluded proximal artery. However, the diastolic flow behavior is quite different from the steady results. The vortex near the occluded artery moved downstream and inwardly during late systole, and disappeared during diastole. Recirculations proximal to the toe and heel regions were significant during diastole. Shear stress oscillation was found along the opposite wall. The results of the present study revealed that tow shear occurs at the proximally occluded host artery aud the recirculation region in the inner wall Just dlstal to the toe region of the anastomosis. The present study suggested that the regions of fluctuated wall shear stress wit flow separation is correlated with the preferential developing regions of anastomosis neointial fibrous hyperplasia.

  • PDF

A Study on the Shear Stress Distribution of the Steady and Physiological Blood Flows (정상 및 박동성 혈류의 전단응력분포에 관한 연구)

  • Suh, S.H.;Yoo, S.S.;Roh, H.W.;Shim, J.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.113-116
    • /
    • 1995
  • Steady and physiological flows of a Newtonian fluid and blood in the bifurcated arterial vessel are numerically simulated. Distributions of velocity, pressure and wall shear stress in the bifurcated arterial vessel are calculated to investigate the differences between steady and physiological flows. For the given Reynolds number physiological flow characteristics of a Newtonian fluid and blood in the bifurcated arterial vessel are quite different from those of steady flows. No flow separation or flow reversal in the bifurcated region in the downstream after stenosis appears during the acceleration phase. Also, no recirculation region is seen for steady flows. However, during the deceleration phase the flow began to exhibit flow reversal, which is eventually extended to the entire wall region.

  • PDF

Flow Characteristics of Developing Laminar Steady Flows in a Straight Duct Connected to a Square Curved Duct (곡관덕트에 연결된 정사각단면 직관덕트에서 증류정상유동의 유동장내 유동특성)

  • Sohn Hyun Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.545-553
    • /
    • 2005
  • In the present study, The characteristics of developing steady laminar flows of a straight duct connected to a $180^{\circ}$ curved duct were examined In the entrance region through experimental measurement. Flow characteristics such as shear stress distributions, pressure distributions and friction coefficient experimentally in a square cross-sectional straight duct by using the PIV system. For the PIV measurement by particles produced from mosquito coils particles. The experimental data were obtained at 9 points dividing the test sections by 400mm. Experimental results can be summarized as follows. Critical Reynolds number, $Re_{cr}$ which indicates transition from laminar steady flow to transition steady flow was 2,150. Shear stress per unit length on the wall was stronger than that in the fully developed flow region. This was attributed to the fact that shear stress and pressure loss in the curvature of a duct were increased. Pressure distributions were gradually decreased irrespective of Reynolds number In the whole test section. This trends were in a good agreement with the reference results. Pipe friction coefficient in the steady state flow region was calculate from method of least squares. The co-relationship between fiction coefficient and Reynolds number was established as follow; ${\lambda}=56/Re$.

Shear Stress and Atherosclerosis

  • Heo, Kyung-Sun;Fujiwara, Keigi;Abe, Jun-Ichi
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.435-440
    • /
    • 2014
  • Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flowdependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.

A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis- (정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석-)

  • Park, Gil-Mun;Cho, Byeong-Gi;Koh, Yeong-Ha;Bong, Tae-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

Studies on the Steady Shear Flow Properties of Sea Mustard Aqueous Extracts (열수 추출 미역액의 정상유동특성에 관한 연구)

  • 최희숙;오성훈
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.1
    • /
    • pp.78-82
    • /
    • 2000
  • For the purpose of investigation of the food processing fittness of the sea mustard aqueous extracts, the steady shear flow have been measured over a wide range of shear rate using a Brookfield digital viscometer(SPDL21). The rheological behaviors of the sea mustard aqueous extracts which were extracted at 10$0^{\circ}C$ for 2 hours exhibited pseudoplastic behavior with yield stress. In the test of the relationship between temperature and apparent viscosity of samples at 10 rpm decreased along with the increment of temperature. The sea mustard aqueous extracts appeared greatly temperature dependent characteristics(Ea=1.51 ㎉/mole).

  • PDF

Studies on the Flow Properties of Semi-Solid Dosage Forms (I) : Steady Shear Flow Behavior of Toothpastes (반고형제제의 유동특성에 관한 연구 (제1보) : 치약의 정상전단 유동거동)

  • Kim, Jeong-Hwa;Song, Ki-Won;Lee, Jang-Oo;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.213-221
    • /
    • 1995
  • The steady shear flow properties of six kinds of commercial toothpastes were measured using a concentric cylinder type rheometer. In this paper, the shear rate and temperature dependencies of their flow behavior were investigated and the validity of the Casson and Herschel-Bulkley models was examined. Further, the flow properties over a wide temperature range were quantitatively evaluated by calculating the various material parameters. Main results obtained from this study can be summarized as follows: (1) Toothpastes are plastic fluids with a yield stress and their flow behavior shows shear-thinning characteristics. (2) With increasing temperature, the degree of shear-thinning becomes weaker and the Newtonian flow behavior occurs at a lower shear rate range. (3) The Herschel-Bulkley model is more effective than the Casson model in predicting their flow behavior. (4) As the temperature increases, the yield stress, plastic viscosity and consistency index become smaller, on the contrary, the flow behavior index becomes larger.

  • PDF

Comparison of Steady and Physiological Blood Flow Characteristics in the Left Coronary Artery Bifurcation (좌관상동맥 분지부내의 정상혈류와 박동성혈류의 유동특성비교)

  • Suh, S.;Yoo, S.S.;Kwon, H.M.;Roh, H.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.57-60
    • /
    • 1995
  • The objective of this investigation is to understand the role of hemodynamics in the formation and development of atherosclerosis lesions in the human left coronary artery This study also aims to compare the blood flow characteristics of steady and physiological flows. Three dimensional, steady and physiological flows of blood in the left coronary artery are simulated using the Finite Volume Method. Apparent viscosity of blood is represented as a function of shear rate by the Carreau model. Distributions of velocity, pressure and shear stress in tile left coronary artery bifurcation are presented to compare tile steady and physiological flow characteristics.

  • PDF

Rheological, Characterization of Aqueous Poly(Ethylene Oxide) Solutions - Creep and Creep Recovery - (폴리에틸렌옥사이드 수용액의 유변학적 특성 평가 - 크리프 및 크리프 회복 -)

  • 장갑식;김태훈;박영훈;송기원
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.175-178
    • /
    • 2001
  • 일반적으로 점탄성 거동을 나타내는 고분자 액체의 전단유동특성(shear flow properties)을 평가하기 위하여 정상전단(steady shear), 동적전단(dynamic shear), 응력완화(stress relaxation) 그리고 크리프(creep) 및 크리프 회복(creep recovery) 실험 등이 활용되고 있다[1], 이때 영전단점도(zero shear viscosity)와 정상상태 회복 컴플라이언스(steady-state recoverable compliance)는 정상상태(steady state)에서 얻어지는 물리량으로, 각 실험방법으로부터 직접적 또는 간접적으로 측정이 가능하다. (중략)

  • PDF

Non-Invasive Measurement of Shear Rates of Pulsating Pipe Flow Using Echo PIV (에코 PIV를 이용한 맥동 유동에서의 in vitro 전단률 측정 연구)

  • Kim, Hyoung-Bum;Chung, In-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1567-1572
    • /
    • 2004
  • Although accurate measurement of velocity profiles, multiple velocity vectors, and shear stress in arteries is important, there is still no easy method to obtain such information in vivo. This study shows the utility of combining ultrasound contrast imaging with particle image velocimetry (PIV) for non-invasive measurement of velocity vectors. The steady flow analytical solution and optical PIV measurements (for pulsatile flow) were used for comparison. When compared to the analytical solution, both echo PIV and optical PIV resolved the steady velocity profile well. Error in shear rate as measured by echo PIV (8%) was comparable to the error of optical PIV (6.5%). In pulsatile flow, echo PIV velocity profiles agreed well with optical PIV profiles. Echo PIV followed the general profile of pulsatile shear stress across the artery but underestimated wall shear at certain time points. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.