Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0078

Shear Stress and Atherosclerosis  

Heo, Kyung-Sun (Aab Cardiovascular Research Institute, University of Rochester)
Fujiwara, Keigi (Aab Cardiovascular Research Institute, University of Rochester)
Abe, Jun-Ichi (Aab Cardiovascular Research Institute, University of Rochester)
Abstract
Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flowdependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.
Keywords
chloride channel; ClC-1; myotonia congenital; skeletal muscle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Le, N.T., Heo, K.S., Takei, Y., Lee, H., Woo, C.H., Chang, E., McClain, C., Hurley, C., Wang, X., Li, F., et al. (2013). A crucial role for p90RSK-mediated reduction of ERK5 transcriptional activity in endothelial dysfunction and atherosclerosis. Circulation 127, 486-499.   DOI   ScienceOn
2 Liu, Y., Chen, B.P., Lu, M., Zhu, Y., Stemerman, M.B., Chien, S., and Shyy, J.Y. (2002). Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arterioscler. Thromb. Vasc. Biol. 22, 76-81.   DOI   ScienceOn
3 Michiels, C. (2003). Endothelial cell functions. J. Cell. Physiol. 196, 430-443.   DOI   ScienceOn
4 Nam, D., Ni, C.W., Rezvan, A., Suo, J., Budzyn, K., Llanos, A., Harrison, D., Giddens, D., and Jo, H. (2009). Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 297, H1535-1543.   DOI   ScienceOn
5 Nauli, S.M., Jin, X., AbouAlaiwi, W.A., El-Jouni, W., Su, X., and Zhou, J. (2013). Non-motile primary cilia as fluid shear stress mechanosensors. Methods Enzymol. 525, 1-20.   DOI
6 Heo, K.S., Chang, E., Le, N.T., Cushman, H.J., Yeh, E.T.H., Fujiwara, K., and Abe, J.I. (2013). De-SUMOylation enzyme of sentrin/SUMO-specific protease 2 regulates disturbed flow-induced SUMOylation of ERK5 and p53 that leads to endothelial dysfunction and atherosclerosis. Circ. Res. 112, 911-923.   DOI   ScienceOn
7 Iiyama, K., Hajra, L., Iiyama, M., Li, H., DiChiara, M., Medoff, B.D., and Cybulsky, M.I. (1999). Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ. Res. 85, 199-207.   DOI   ScienceOn
8 Jalali, S., del Pozo, M.A., Chen, K., Miao, H., Li, Y., Schwartz, M.A., Shyy, J.Y., and Chien, S. (2001). Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci. USA 98, 1042-1046.   DOI   ScienceOn
9 Jongstra-Bilen, J., Haidari, M., Zhu, S.N., Chen, M., Guha, D., and Cybulsky, M.I. (2006). Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J. Exp. Med. 203, 2073-2083.   DOI   ScienceOn
10 Johnson, B.D., Mather, K.J., and Wallace, J.P. (2011). Mechanotransduction of shear in the endothelium: basic studies and clinical implications. Vasc. Med. 16, 365-377.   DOI   ScienceOn
11 Kano, Y., Katoh, K., and Fujiwara, K. (2000). Lateral zone of cell-cell adhesion as the major fluid shear stress-related signal transduction site. Circ. Res. 86, 425-433.   DOI   ScienceOn
12 Koskinas, K.C., Chatzizisis, Y.S., Antoniadis, A.P., and Giannoglou, G.D. (2012). Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J. Am. Coll. Cardiol. 59, 1337-1349.   DOI   ScienceOn
13 Goel, R., Schrank, B.R., Arora, S., Boylan, B., Fleming, B., Miura, H., Newman, P.J., Molthen, R.C., and Newman, D.K. (2008). Site-specific effects of PECAM-1 on atherosclerosis in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 1996-2002.   DOI   ScienceOn
14 Gudi, S., Huvar, I., White, C.R., McKnight, N.L., Dusserre, N., Boss, G.R., and Frangos, J.A. (2003). Rapid activation of Ras by fluid flow is mediated by Galpha(q) and Gbetagamma subunits of heterotrimeric G proteins in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 23, 994-1000.   DOI   ScienceOn
15 Hajra, L., Evans, A.I., Chen, M., Hyduk, S.J., Collins, T., and Cybulsky, M.I. (2000). The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl. Acad. Sci. USA 97, 9052-9057.   DOI
16 Heo, K.S., Lee, H., Nigro, P., Thomas, T., Le, N.T., Chang, E., McClain, C., Reinhart-King, C.A., King, M.R., Berk, B.C., et al. (2011b). PKCzeta mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. J. Cell Biol. 193, 867-884.   DOI   ScienceOn
17 Harry, B.L., Sanders, J.M., Feaver, R.E., Lansey, M., Deem, T.L., Zarbock, A., Bruce, A.C., Pryor, A.W., Gelfand, B.D., Blackman, B.R., et al. (2008). Endothelial cell PECAM-1 promotes atherosclerotic lesions in areas of disturbed flow in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 2003-2008.   DOI   ScienceOn
18 Helmke, B.P., Goldman, R.D., and Davies, P.F. (2000). Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ. Res. 86, 745-752.   DOI   ScienceOn
19 Heo, K.S., Fujiwara, K., and Abe, J. (2011a). Disturbed-flow-mediated vascular reactive oxygen species induce endothelial dysfunction. Circ. J. 75, 2722-2730.   DOI   ScienceOn
20 Curry, F.E., and Adamson, R.H. (2012). Endothelial glycocalyx: permeability barrier and mechanosensor. Ann. Biomed. Eng. 40, 828-839.   DOI
21 Davies, P.F. (2009). Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6, 16-26.   DOI   ScienceOn
22 Davies, M.J., Gordon, J.L., Gearing, A.J., Pigott, R., Woolf, N., Katz, D., and Kyriakopoulos, A. (1993). The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E- selectin in human atherosclerosis. J. Pathol. 171, 223-229.   DOI   ScienceOn
23 Davis, M.E., Cai, H., Drummond, G.R., and Harrison, D.G. (2000). Regulation of endothelial nitric oxide synthase (eNOS) expression by laminar shear stress (abstract). Circulation 102, II-117.
24 Garin, G., Abe, J.I., Mohan, A., Lu, W., Yan, C., Newby, A.C., Rhaman, A., and Berk, B.C. (2007). Flow antagonizes TNF-alpha signaling in endothelial cells by inhibiting caspase-dependent PKC zeta processing. Circ. Res. 101, 97-105.   DOI   ScienceOn
25 Davis, M.E., Cai, H., Drummond, G.R., and Harrison, D.G. (2001). Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ. Res. 89, 1073-1080.   DOI   ScienceOn
26 Dixit, M., Loot, A.E., Mohamed, A., Fisslthaler, B., Boulanger, C.M., Ceacareanu, B., Hassid, A., Busse, R., and Fleming, I. (2005). Gab1, SHP2, and protein kinase A are crucial for the activation of the endothelial NO synthase by fluid shear stress. Circ. Res. 97, 1236-1244.   DOI   ScienceOn
27 Fleming, I., Fisslthaler, B., Dixit, M., and Busse, R. (2005). Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J. Cell Sci. 118, 4103-4111.   DOI   ScienceOn
28 Geiss-Friedlander, R., and Melchior, F. (2007). Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell. Biol. 8, 947-956.   DOI   ScienceOn
29 Barton, M., Baretella, O., and Meyer, M.R. (2012). Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction. Br. J. Pharmacol. 165, 591-602.   DOI   ScienceOn
30 Berk, B.C., Min, W., Yan, C., Surapisitchat, J., Liu, Y., and Hoefen, R. (2002). Atheroprotective mechanisms activated by fluid shear stress in endothelial cells. Drug News Perspect. 15, 133-139.   DOI   ScienceOn
31 Boo, Y.C., Hwang, J., Sykes, M., Michell, B.J., Kemp, B.E., Lum, H., and Jo, H. (2002). Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 283, H1819-1828.   DOI   ScienceOn
32 Chiu, Y.J., McBeath, E., and Fujiwara, K. (2008b). Mechanotransduction in an extracted cell model: Fyn drives stretch- and flow-elicited PECAM-1 phosphorylation. J. Cell Biol. 182, 753-763.   DOI   ScienceOn
33 Cheng, J., Wang, D., Wang, Z., and Yeh, E.T. (2004). SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol. Cell. Biol. 24, 6021-6028.   DOI   ScienceOn
34 Chiu, Y.J., Kusano, K., Thomas, T.N., and Fujiwara, K. (2004). Endothelial cell-cell adhesion and mechanosignal transduction. Endothelium 11, 59-73.   DOI   ScienceOn
35 Chiu, S.Y., Asai, N., Costantini, F., and Hsu, W. (2008a). SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol. 6, e310.   DOI   ScienceOn
36 Conway, D., and Schwartz, M.A. (2012). Lessons from the endothelial junctional mechanosensory complex. F1000 Biol. Rep. 4, 1.
37 Akaike, M., Che, W., Marmarosh, N.L., Ohta, S., Osawa, M., Ding, B., Berk, B.C., Yan, C., and Abe, J. (2004). The hinge-helix 1 region of peroxisome proliferator-activated receptor gamma1 (PPARgamma1) mediates interaction with extracellular signalregulated kinase 5 and PPARgamma1 transcriptional activation: involvement in flow-induced PPARgamma activation in endothelial cells. Mol. Cell. Biol. 24, 8691-8704.   DOI   ScienceOn
38 Ando, J., and Yamamoto, K. (2009). Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ. J. 73, 1983-1992.   DOI   ScienceOn
39 Barakat, A.I. (1999). Responsiveness of vascular endothelium to shear stress: potential role of ion channels and cellular cytoskeleton (review). Int. J. Mol. Med. 4, 323-332.
40 Yu, J., Bergaya, S., Murata, T., Alp, I.F., Bauer, M.P., Lin, M.I., Drab, M., Kurzchalia, T.V., Stan, R.V., and Sessa, W.C. (2006). Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J. Clin. Invest. 116, 1284-1291.   DOI
41 Witty, J., Aguilar-Martinez, E., and Sharrocks, A.D. (2010). SENP1 participates in the dynamic regulation of Elk-1 SUMOylation. Biochem. J. 428, 247-254.   DOI   ScienceOn
42 Won, D., Zhu, S.N., Chen, M., Teichert, A.M., Fish, J.E., Matouk, C.C., Bonert, M., Ojha, M., Marsden, P.A., and Cybulsky, M.I. (2007). Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. Am. J. Pathol. 171, 1691-1704.   DOI   ScienceOn
43 Woo, C.H., Massett, M.P., Shishido, T., Itoh, S., Ding, B., McClain, C., Che, W., Vulapalli, S.R., Yan, C., and Abe, J. (2006). ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor delta (PPARdelta) stimulation. J. Biol. Chem. 281, 32164-32174.   DOI   ScienceOn
44 Woo, C.H., Shishido, T., McClain, C., Lim, J.H., Li, J.D., Yang, J., Yan, C., and Abe, J. (2008a). Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced anti-inflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ. Res. 102, 538-545.   DOI   ScienceOn
45 Woo, C.H., Shishido, T., McClain, C., Lim, J.H., Li, J.D., Yang, J., Yan, C., and Abe, J. (2008b). Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced anti-inflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ. Res. 102, 538-545.   DOI   ScienceOn
46 Yeh, E.T. (2009). SUMOylation and De-SUMOylation: wrestling with life's processes. J. Biol. Chem. 284, 8223-8227.   DOI   ScienceOn
47 Reinhart-King, C.A., Fujiwara, K., and Berk, B.C. (2008). Physiologic stress-mediated signaling in the endothelium. Methods Enzymol. 443, 25-44.   DOI   ScienceOn
48 Osawa, M., Masuda, M., Harada, N., Bruno Lopes, R., and Fujiwara, K. (1997). Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells. Eur. J. Cell Biol. 72, 229-237.
49 Osborn, E.A., Rabodzey, A., Dewey, C.F., Jr., and Hartwig, J.H. (2006). Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress. Am. J. Physiol. Cell Physiol. 290, C444-452.   DOI
50 Pi, X., Yan, C., and Berk, B.C. (2004). Big mitogen-activated protein kinase (BMK1)/ERK5 protects endothelial cells from apoptosis. Circ. Res. 94, 362-369.   DOI   ScienceOn
51 Shyy, J.Y., and Chien, S. (2002). Role of integrins in endothelial mechanosensing of shear stress. Circ. Res. 91, 769-775.   DOI
52 Stern, D.M., Esposito, C., Gerlach, H., Gerlach, M., Ryan, J., Handley, D., and Nawroth, P. (1991). Endothelium and regulation of coagulation. Diabetes Care 14, 160-166.   DOI   ScienceOn
53 Traub, O., and Berk, B.C. (1998). Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18, 677-685.   DOI   ScienceOn
54 Tzima, E., del Pozo, M.A., Shattil, S.J., Chien, S., and Schwartz, M.A. (2001). Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 20, 4639-4647.   DOI   ScienceOn
55 Tzima, E., Irani-Tehrani, M., Kiosses, W.B., Dejana, E., Schultz, D.A., Engelhardt, B., Cao, G., DeLisser, H., and Schwartz, M.A. (2005). A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426-431.   DOI   ScienceOn
56 Jiang, M., Chiu, S.Y., and Hsu, W. (2011). SUMO-specific protease 2 in Mdm2-mediated regulation of p53. Cell Death Differ. 18, 1005-1015.   DOI   ScienceOn
57 Chang, E., Heo, K.S., Woo, C.H., Lee, H., Le, N.T., Thomas, T.N., Fujiwara, K., and Abe, J. (2011). MK2 SUMOylation regulates actin filament remodeling and subsequent migration in endothelial cells by inhibiting MK2 kinase and HSP27 phosphorylation. Blood 117, 2527-2537.   DOI   ScienceOn
58 Young, A., Wu, W., Sun, W., Benjamin Larman, H., Wang, N., Li, Y.S., Shyy, J.Y., Chien, S., and Garcia-Cardena, G. (2009). Flow activation of AMP-activated protein kinase in vascular endothelium leads to Kruppel-like factor 2 expression. Arterioscler. Thromb. Vasc. Biol. 29, 1902-1908.   DOI   ScienceOn