• Title/Summary/Keyword: steady shear flow

Search Result 169, Processing Time 0.028 seconds

Rheological Behavior of Semi-Solid Ointment Base (Vaseline) in Steady Shear Flow Fields (정상전단유동장에서 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Kim, Yoon-Jeong;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.137-148
    • /
    • 2007
  • Using a strain-controlled rheometer [Rheometrics Dynamic Analyzer (RDA II)], the steady shear flow properties of a semi-solid ointment base (vaseline) have been measured over a wide range of shear rates at temperature range of $25{\sim}60^{\circ}C$. In this article, the steady shear flow properties (shear stress, steady shear viscosity and yield stress) were reported from the experimentally obtained data and the effects of shear rate as well as temperature on these properties were discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters (yield stress, consistency index and flow behavior index). Main findings obtained from this study can be summarized as follows : (1) At temperature range lower than $40^{\circ}C$, vaseline is regarded as a viscoplastic material having a finite magnitude of yield stress and its flow behavior beyond a yield stress shows a shear-thinning (or pseudo-plastic) feature, indicating a decrease in steady shear viscosity as an increase in shear rate. At this temperature range, the flow curve of vaseline has two inflection points and the first inflection point occurring at relatively lower shear rate corresponds to a static yield stress. The static yield stress of vaseline is decreased with increasing temperature and takes place at a lower shear rate, due to a progressive breakdown of three dimensional network structure. (2) At temperature range higher than $45^{\circ}C$, vaseline becomes a viscous liquid with no yield stress and its flow character exhibits a Newtonian behavior, demonstrating a constant steady shear viscosity regardless of an increase in shear rate. With increasing temperature, vaseline begins to show a Newtonian behavior at a lower shear rate range, indicating that the microcrystalline structure is completely destroyed due to a synergic effect of high temperature and shear deformation. (3) Over a whole range of temperatures tested, the Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have an almostly equivalent ability to quantitatively describe the steady shear flow behavior of vaseline, whereas the Bingham, Casson,and Vocadlo models do not give a good ability.

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

Steady Shear Flow Properties of Aqueous Poly(Ethylene Oxide) Solutions (폴리에틸렌옥사이드 수용액의 정상유동 특성)

  • Song, Ki-Won;Kim, Tae-Hoon;Chang, Gap-Shik;An, Seung-Kook;Lee, Jang-Oo;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.3
    • /
    • pp.193-203
    • /
    • 1999
  • In order to investigate systematically the steady shear flow properties of aqueous po1y(ethylene oxide) (PEO) solutions having various molecular weights and concentrations, the steady flow viscosity has been measured with a Rheometrics Fluids Spectrometer (RFS II) over a wide range of shear rates. The effects of shear rate, concentration, and molecular weight on the steady shear flow properties were reported in detail from the experimentally measured data, and then the results were interpreted using the concept of a material characteristic time. In addition, some flow models describing the non-Newtonian behavior (shear-thinning characteristics) of polymeric liquids were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was examined by calculating the various material parameters. Main results obtained from this study can be summarized as follows: (1) At low shear rates, aqueous PEO solutions show a Newtonian viscous behavior which is independent of shear rate. At shear rate region higher than a critical shear rate, however, they exhibit a shear-thinning behavior, demonstrating a decrease in steady flow viscosity with increasing shear rate. (2) As an increase in concentration and/or molecular weight, the zero-shear viscosity is increased while the Newtonian viscous region becomes narrower. Moreover, the critical shear rate at which the transition from the Newtonian to shear-thinning behavior occurs is decreased, and the shear-thinning nature becomes more remarkable. (3) Aqueous PEO solutions show a Newtonian viscous behavior at shear rate range lower than the inverse value of a characteristic time $1/{\lambda}_E$, while they exhibit a shear-thinning behavior at shear rate range higher than $1/{\lambda}_E$. For aqueous PEO solutions having a broad molecular weight distribution, the inverse value of a characteristic time is not quantitatively equivalent to the critical shear rate, but the power-law relationship holds between the two quantities. (4) The Cross, Carreau, and Carreau-Yasuda models are all applicable to describe the steady flow behavior of aqueous PEO solutions. Among these models, the Carreau-Yasuda model has the best validity.

  • PDF

Velocity and Shear Stress Distributions for Steady and Physiological Flows in the Abdominal Aorta/lLIAC Artery Bifurcation (복부대동맥/장골동맥 분기혈관내 정상 및 박동성 유동의 속도와 전단응력분포)

  • 서상호
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • Steady and physiological flows of a Newtonian fluid and blood in the abdominal gorta/iliac artery bifurcation are numerically simulated to understand the etiology and pathogenesis of atherosclerosis. Distributions of velocity, pressure, and wall shear stress in the bifurcated arterial vessel model are calculated to investigate the differences of flow characteristics between steady and physiological flows and to compare flow characteristics of blood with that of a Newtonian fluid For the given Reynolds number the flow characteristics of physiological flows for a Newtonian fluid and blood in the bifurcated arterial vessel are quite different from thcse of steady flows. No flow separation or flow reversal in the bifurcated region appears downstream of a stenosis during the acceleration phase. However, during the deceleration phase the flow exhibits flow separation in the outer walls of daugtlter branches, which extends to the entire wall region.

  • PDF

Experimental and Theoretical Study on Shear Flow Behavior of Polypropylene/Layered Silicate Nanocomposites

  • Lee, Seung-Hwan;Youn, Jae-Ryoun
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.191-214
    • /
    • 2008
  • Polypropylene/layered silicate nanocomposites containing maleic anhydride grafted polypropylene were prepared by melt compounding and their rheological behavior was investigated in shear flow. Transient and steady shear flows were simulated numerically by using the K-BKZ integral constitutive equation along with experimentally determined damping functions under dynamic oscillatory and step strain shear flows. Nonlinear shear responses were predicted with the K-BKZ constitutive equation using two different damping functions such as the Wagner and PSM models. It was observed that PP-g-MAH compatibilized PP/layered silicate nanocomposites have stronger and earlier shear thinning and higher steady shear viscosity than pure PP resin or uncompatibilized nanocomposites at low shear rate regions. Strong damping behavior of the PP/layered silicate nanocomposite was predicted under large step shear strain and considered as a result of the strain-induced orientation of the organoclay in the shear flow. Steady shear viscosity of the pure PP and uncompatibilized nanocomposite predicted by the K-BKZ model was in good agreement with the experimental results at all shear rate regions. However, the model was inadequate to predict the steady shear viscosity of PP-g-MAH compatibilized nanocomposites quantitatively because the K-BKZ model overestimates strain-softening damping behavior for PP/layered silicate nanocomposites.

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

Wall slip of vaseline in steady shear rheometry

  • Song, Ki-Won;Chang, Gap-Shik;Koo, Ja-Seung
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2003
  • The steady shear flow properties of vaseline generally used as a base of the pharmaceutical dosage forms were studied in the consideration of wall slip phenomenon. The purpose of this study was to show that how slip may affect the experimental steady-state flow curves of semisolid ointment bases and to discuss the ways to eliminate (or minimize) wall slip effect in a rotational rheometer. Using both a strain-controlled ARES rheometer and a stress-controlled AR1000 rheometer, the steady shear flow behavior was investigated with various experimental conditions ; the surface roughness, sample preparation, plate diameter, gap size, shearing time, and loading methods were varied. A stress-controlled rheometer was suitable for investigating the flow behavior of semisolid ointment bases which show severe wall slip effects. In the conditions of parallel plates attached with sand paper, treated sample, smaller diameter fixture, larger gap size, shorter shearing time, and normal force control loading method, the wall slip effects could be minimized. A critical shear stress for the onset of slip was extended to above 10,000 dyne/$\textrm{cm}^2$. The wall slip effects could not be perfectly eliminated by any experimental conditions. However, the slip was delayed to higher value of shear stress by selecting proper fixture properties and experimental conditions.

Determining the flow curves for an inverse ferrofluid

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • An inverse ferrofluid composed of micron sized polymethylmethacrylate particles dispersed in ferrofluid was used to investigate the effects of test duration times on determining the flow curves of these materials under constant magnetic field. The results showed that flow curves determined using low duration times were most likely not measuring the steady state rheological response. However, at longer duration times, which are expected to correspond more to steady state behaviour, we noticed the occurrence of plateau and decreasing flow curves in the shear rate range of $0.004\;s^{-1}$ to ${\sim}20\;s^{-1}$, which suggest the presence of nonhomogeneities and shear localization in the material. This behaviour was also reflected in the steady state results from shear start up tests performed over the same range of shear rates. The results indicate that care is required when interpreting flow curves obtained for inverse ferrofluids.

A Numerical Study on the Steady and Pulsatile Flow with Various Diameter Ratios of Abdominal Aortic Aneurysm (복부대동맥류의 직경비에 따른 정상유동 및 맥동유동에 관한 수치적 연구)

  • Moh, Jeong-Hah;Park, Sang-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.920-928
    • /
    • 2003
  • The objective of the present study was to investigate the characteristics of flow and wall shear stress under steady and pulsatile flow in the aneurysm. The numerical simulation using the software were carried out for the diameter ratios ranging from 1.5 to 3.0, Reynolds number ranging from 900 to 1800 and Womersley number, 15.47. For steady flow, it was shown that a recirculating vortex occupied the entire bulge with its core located closer to the distal end of the bulge and the strength of vortex increased with increase of the Reynolds number and diameter ratio. The position of a maximum wall shear stress was the distal end of the aneurysm regardless of the Reynolds number and diameter ratios. For the pulsatile flow, a recirculating flow at the bulge was developed and disappeared for one period and the strength of vortex increased with the diameter ratio. The maximum values of the wall shear stress increased in proportion to the diameter ratio. However, the position of a maximum wall shear stress was the distal end of the aneurysm regardless of the diameter ratios.

Steady Shear Flow and Dynamic Viscoelastic Properties of Semi-Solid Food Materials (반고형 식품류의 정상유동특성 및 동적 점탄성)

  • 송기원;장갑식
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.143-152
    • /
    • 1999
  • Using a Rheometrics Fluids Spectrometer(RFS II), the steady shear flow and the small-amplitude dynamic viscoelastic properties of three kinds of semi-solid food materials(mayonnaise, tomato ketchup, and wasabi) have been measured over a wide range of shear rates and angular frequencies. The shear rate dependence of steady flow behavior and the angular frequency dependence of dynamic viscoelastic behavior were reported from the experimentally measured data. In addition, some viscoplastic flow models with a yield stress term were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was also examined in detail. Furthermore, the correlations between steady shear flow(nonlinear behavior) and dynamic viscoelastic(linear behavior)properties were discussed using the modified power-law flow equations. Main results obtained from this study can be summarized as follows : (1) Semi-solid food materials are regarded as viscoplastic fluids having a finite magnitude of yield stress, and their flow behavior shows shear-thinning characteristics, exhibiting a decrease in steady flow viscosity with increasing shear rate. (2) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable to describe the steady flow behavior of semi-solid food materials. Among these models, the Heinz-Casson model has the best validity. (3) Semi-solid food materials show a stronger shear-thinning behavior at shear rate region higher than a critical shear rate where a more progressive structure breakdown takes place. (4) Both the storage and loss moduli are increased with increasing angular frequency, but they have a slight dependence on angular frequency. The elastic behavior is dominant to the viscous behavior over a wide range of angular frequencies. (5) All of the steady flow, dynamic, and complex viscosities are well satisfied with the power-law model behavior. The relationships between steady shear flow and dynamic viscoelastic properties can well be described by the modified forms of the power-law flow equations.

  • PDF