• Title/Summary/Keyword: statistical parameters

Search Result 2,683, Processing Time 0.038 seconds

Statistical models from weigh-in-motion data

  • Chan, Tommy H.T.;Miao, T.J.;Ashebo, Demeke B.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.85-110
    • /
    • 2005
  • This paper aims at formulating various statistical models for the study of a ten year Weigh-in-Motion (WIM) data collected from various WIM stations in Hong Kong. In order to study the bridge live load model it is important to determine the mathematical distributions of different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc. Each of the above parameters is analyzed by various stochastic processes in order to obtain the mathematical distributions and the Maximum Likelihood Estimation (MLE) method is adopted to calculate the statistical parameters, expected values and standard deviations from the given samples of data. The Kolmogorov-Smirnov (K-S) method of approach is used to check the suitability of the statistical model selected for the particular parameter and the Monte Carlo method is used to simulate the distributions of maximum value stochastic processes of a series of given stochastic processes. Using the statistical analysis approach the maximum value of gross vehicle weight and axle weight in bridge design life has been determined and the distribution functions of these parameters are obtained under both free-flowing traffic and dense traffic status. The maximum value of bending moments and shears for wide range of simple spans are obtained by extrapolation. It has been observed that the obtained maximum values of the gross vehicle weight and axle weight from this study are very close to their legal limitations of Hong Kong which are 42 tonnes for gross weight and 10 tonnes for axle weight.

An Overview of Bootstrapping Method Applicable to Survey Researches in Rehabilitation Science

  • Choi, Bong-sam
    • Physical Therapy Korea
    • /
    • v.23 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Parametric statistical procedures are typically conducted under the condition in which a sample distribution is statistically identical with its population. In reality, investigators use inferential statistics to estimate parameters based on the sample drawn because population distributions are unknown. The uncertainty of limited data from the sample such as lack of sample size may be a challenge in most rehabilitation studies. Objects: The purpose of this study is to review the bootstrapping method to overcome shortcomings of limited sample size in rehabilitation studies. Methods: Articles were reviewed. Results: Bootstrapping method is a statistical procedure that permits the iterative re-sampling with replacement from a sample when the population distribution is unknown. This statistical procedure is to enhance the representativeness of the population being studied and to determine estimates of the parameters when sample size are too limited to generalize the study outcome to target population. The bootstrapping method would overcome limitations such as type II error resulting from small sample sizes. An application on a typical data of a study represented how to deal with challenges of estimating a parameter from small sample size and enhance the uncertainty with optimal confidence intervals and levels. Conclusion: Bootstrapping method may be an effective statistical procedure reducing the standard error of population parameters under the condition requiring both acceptable confidence intervals and confidence level (i.e., p=.05).

Economic-Statistical Design of VSSI$\bar{X}$ Control Charts Considering Two Assignable Causes (두 개의 이상원인을 고려한 VSSI$\bar{X}$ 관리도의 경제적-통계적 설계)

  • Lee, Ho-Joong;Lim, Tae-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.1
    • /
    • pp.87-98
    • /
    • 2005
  • This research investigates economic-statistical characteristics of variable sampling size and interval (VSSI)$\bar{X}$charts under two assignable causes. A Markov chain approach is employed in order to calculate average run length (ARL) and average time to signal (ATS). Six transient states are derived by carefully defining the state. A steady state cost rate function is constructed based on Lorenzen and Vance(1986) model. The cost rate function is optimized with respect to six design parameters for designing the VSSI $\bar{X}$ charts. Computational experiments show that the VSSI $\bar{X}$ chart is superior to the Shewhart $\bar{X}$ chart in the economic-statistical sense, even under two assignable causes. A comparative study shows that the cost rate may increase up to almost 30% by overlooking the second cause. Critical input parameters are also derived from a sensitivity study and a few guideline graphs are provided for determining the design parameters.

Statistical Analysis of Microhardness Variations in Plasma Sprayed $Cr_3C_2-NiCr$ Coatings

  • Li, Jianfeng;Huang, jingqi;Ding, Chuanxian
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.171-178
    • /
    • 1998
  • The microstructure and properties of plasma-sprayed coatings depend on a great number of spraying parameters, random factors, which lead to vibration in these spraying parameters, may in some degree influence the microstructure and properties of the coatings. Therefore, the property values appear certain distributions, and the description and comparison of the properties of plasma-sprayed coatings should be performed employing statistical analysis. In this paper, $Cr_3C_2$-Nicr coatings of different thickness were sprayed onto stainless steel using atmosphere plasma system and adopting three kinds of gun translation speeds. Then the microhardness measurements were performed on polished surface of the coatings. Forty readings were taken and statistically analyzed by calculating the characteristic values, estimating and comparing the means, and assessing whether they belonged to the Normal or Weibull Distribution. This study has found that statistical analysis could discriminate influence of spraying parameters and coating design on microhardness of the $Cr_3C_2$-Nicr coatings from random vibration, which showed that the microharness of the $Cr_3C_2$-Nicr coatings were related to gun translation speed coating thickness.

  • PDF

Generation of Roughness Using the Random Midpoint Displacement Method and Its Application to Quantification of Joint Roughness (랜덤중점변위법에 의한 거칠기의 생성 및 활용에 관한 연구)

  • Seo, Hyeon-Kyo;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.196-204
    • /
    • 2012
  • Quantification of roughness plays an important role in modeling strength deformability and fluid flow behaviors of rock joints. A procedure was suggested to simulate joint roughness, and characteristics of the roughness was investigated in this study. Stationary fractional Brownian profiles with known input values of the fractal parameter and other profile properties were generated based on random midpoint displacement method. Also, a procedure to simulate three dimensional roughness surface was suggested using the random midpoint displacement method. Selected statistical roughness parameters were calculated for the generated self-affine profiles to investigate the attribute of roughness. Obtained results show that statistical parameters applied in this study were able to consider correlation structure and amplitude of the profiles. However, effect of data density should be tackled to use statistical parameters for roughness quantification.

Reliability analysis of reinforced concrete haunched beams shear capacity based on stochastic nonlinear FE analysis

  • Albegmprli, Hasan M.;Cevik, Abdulkadir;Gulsan, M. Eren;Kurtoglu, Ahmet Emin
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.259-277
    • /
    • 2015
  • The lack of experimental studies on the mechanical behavior of reinforced concrete (RC) haunched beams leads to difficulties in statistical and reliability analyses. This study performs stochastic and reliability analyses of the ultimate shear capacity of RC haunched beams based on nonlinear finite element analysis. The main aim of this study is to investigate the influence of uncertainty in material properties and geometry parameters on the mechanical performance and shear capacity of RC haunched beams. Firstly, 65 experimentally tested RC haunched beams and prismatic beams are analyzed via deterministic nonlinear finite element method by a special program (ATENA) to verify the efficiency of utilized numerical models, the shear capacity and the crack pattern. The accuracy of nonlinear finite element analyses is verified by comparing the results of nonlinear finite element and experiments and both results are found to be in a good agreement. Afterwards, stochastic analyses are performed for each beam where the RC material properties and geometry parameters are assigned to take probabilistic values using an advanced simulating procedure. As a result of stochastic analysis, statistical parameters are determined. The statistical parameters are obtained for resistance bias factor and the coefficient of variation which were found to be equal to 1.053 and 0.137 respectively. Finally, reliability analyses are accomplished using the limit state functions of ACI-318 and ASCE-7 depending on the calculated statistical parameters. The results show that the RC haunched beams have higher sensitivity and riskiness than the RC prismatic beams.

Analysis and Classification of Acoustic Emission Signals During Wood Drying Using the Principal Component Analysis (주성분 분석을 이용한 목재 건조 중 발생하는 음향방출 신호의 해석 및 분류)

  • Kang, Ho-Yang;Kim, Ki-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.254-262
    • /
    • 2003
  • In this study, acoustic emission (AE) signals due to surface cracking and moisture movement in the flat-sawn boards of oak (Quercus Variablilis) during drying under the ambient conditions were analyzed and classified using the principal component analysis. The AE signals corresponding to surface cracking showed higher in peak amplitude and peak frequency, and shorter in rise time than those corresponding to moisture movement. To reduce the multicollinearity among AE features and to extract the significant AE parameters, correlation analysis was performed. Over 99% of the variance of AE parameters could be accounted for by the first to the fourth principal components. The classification feasibility and success rate were investigated in terms of two statistical classifiers having six independent variables (AE parameters) and six principal components. As a result, the statistical classifier having AE parameters showed the success rate of 70.0%. The statistical classifier having principal components showed the success rate of 87.5% which was considerably than that of the statistical classifier having AE parameters.

Statistical Estimation of Modal Characteristics of a Structural System Based on Design Variable Samples (설계변수 표본에 근거한 구조시스템 모달 특성의 통계적 예측)

  • Kim, Yong-Woo;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1314-1319
    • /
    • 2009
  • The design methods of mechanical systems are largely classified into deterministic methods and stochastic methods. In deterministic methods, design parameters are assumed to have fixed values. On the other hand, in stochastic methods, design parameters are assumed to be statistically distributed. When a stochastic method is employed, statistical characteristics of the populations of design variables are assumed to be known. However, very often, it is almost impossible or very expensive to obtain the statistical characteristics of the populations. Therefore a sample survey method is usually employed for stochastic methods. This paper describes the procedure of estimating the statistical characteristics of populations by employing sample data sets. An example of AFM micro cantilever beam is employed to show the effectiveness of the procedure.

Three-Parameter Gamma Distribution and Its Significance in Structural Reliability

  • Zhao, Yan-Gang;Alfredo H-S. Ang
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • Information on the distribution of the basic random variables is essential for the accurate evaluation of structural reliability. The usual method for determining the distribution is to fit a candidate distribution to the histogram of available statistical data of the variable and perform appropriate goodness-of-fit tests. Generally, such candidate distributions would have two parameters that may be evaluated from the mean value and standard deviation of the statistical data. In the present paper, a-parameter Gamma distribution, whose parameters can be directly defined in terms of the mean value, standard deviation and skewness of available data, is suggested. The flexibility and advantages of the distribution in fitting statistical data and its significance in structural reliability evaluation are identified and discussed. Numerical examples are presented to demonstrate these advantages.

  • PDF

Designing Statistical Test for Mean of Random Profiles

  • Bahri, Mehrab;Hadi-Vencheh, Abdollah
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.432-445
    • /
    • 2016
  • A random profile is the result of a process, the output of which is a function instead of a scalar or vector quantity. In the nature of these objects, two main dimensions of "functionality" and "randomness" can be recognized. Valuable researches have been conducted to present control charts for monitoring such processes in which a regression approach has been applied by focusing on "randomness" of profiles. Performing other statistical techniques such as hypothesis testing for different parameters, comparing parameters of two populations, ANOVA, DOE, etc. has been postponed thus far, because the "functional" nature of profiles is ignored. In this paper, first, some needed theorems are proven with an applied approach, so that be understandable for an engineer which is unfamiliar with advanced mathematical analysis. Then, as an application of that, a statistical test is designed for mean of continuous random profiles. Finally, using experimental operating characteristic curves obtained in computer simulation, it is demonstrated that the presented tests are properly able to recognize deviations in the null hypothesis.