• Title/Summary/Keyword: statistical learning method

Search Result 483, Processing Time 0.022 seconds

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

Discretization Method Based on Quantiles for Variable Selection Using Mutual Information

  • CHa, Woon-Ock;Huh, Moon-Yul
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.659-672
    • /
    • 2005
  • This paper evaluates discretization of continuous variables to select relevant variables for supervised learning using mutual information. Three discretization methods, MDL, Histogram and 4-Intervals are considered. The process of discretization and variable subset selection is evaluated according to the classification accuracies with the 6 real data sets of UCI databases. Results show that 4-Interval discretization method based on quantiles, is robust and efficient for variable selection process. We also visually evaluate the appropriateness of the selected subset of variables.

Tree-based Navigation Pattern Analysis

  • Choi, Hyun-Jip
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.271-279
    • /
    • 2001
  • Sequential pattern discovery is one of main interests in web usage mining. the technique of sequential pattern discovery attempts to find inter-session patterns such that the presence of a set of items is followed by another item in a time-ordered set of server sessions. In this paper, a tree-based sequential pattern finding method is proposed in order to discover navigation patterns in server sessions. At each learning process, the suggested method learns about the navigation patterns per server session and summarized into the modified Rymon's tree.

  • PDF

Research on Developing Instructional Method for Consumer Education of Home Economics in the Middle School -Focusing on Problem Solving method- (가정과 교육에 있어서 소비자교육의 교수.학습방법에 관한 개발연구-문제해결 중심 학습모형개발을 중심으로-)

  • Park, Myung-Hee;Huh, Hyung;Park, Myung-Sook
    • Journal of Korean Home Economics Education Association
    • /
    • v.7 no.2
    • /
    • pp.91-101
    • /
    • 1995
  • The purposes of the study were to: (1) develop instructional method for consumer education of home economics in the middle school. (2) test the effectiveness of the developing instructional method focusing on the problem solving. In the method of the research, literature review related to the consumer education. models of teaching and characteristics of problem solving method were studied. Also, on the basis of theoretical evidence. the teaching plan focusing on problem solving method was developed. In addition, experimental research was done to find out the learning effectiveness on the developing instructional method of the study. This experimental research were made in the six classes of the three middle school in Seoul. For the statistical analysis of the study, frequency, mean and two way ANOVA(factorial design) were used. The results of this study were summarized as follows; (1) The developed instructional method of the study was more effective than the traditional lecture method. (2) The effects of the teaching-learning method were depended on the sex. The learning effects on the female students were higher than the male students. (3) The learning effects on the students were influenced by the sex and teaching method.

  • PDF

Comparison of Boosting and SVM

  • Kim, Yong-Dai;Kim, Kyoung-Hee;Song, Seuck-Heun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.999-1012
    • /
    • 2005
  • We compare two popular algorithms in current machine learning and statistical learning areas, boosting method represented by AdaBoost and kernel based SVM (Support Vector Machine) using 13 real data sets. This comparative study shows that boosting method has smaller prediction error in data with heavy noise, whereas SVM has smaller prediction error in the data with little noise.

  • PDF

A Machine Learning Approach to Korean Language Stemming

  • Cho, Se-hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.549-557
    • /
    • 2001
  • Morphological analysis and POS tagging require a dictionary for the language at hand . In this fashion though it is impossible to analyze a language a dictionary. We also have difficulty if significant portion of the vocabulary is new or unknown . This paper explores the possibility of learning morphology of an agglutinative language. in particular Korean language, without any prior lexical knowledge of the language. We use unsupervised learning in that there is no instructor to guide the outcome of the learner, nor any tagged corpus. Here are the main characteristics of the approach: First. we use only raw corpus without any tags attached or any dictionary. Second, unlike many heuristics that are theoretically ungrounded, this method is based on statistical methods , which are widely accepted. The method is currently applied only to Korean language but since it is essentially language-neutral it can easily be adapted to other agglutinative languages.

  • PDF

Estimation of Software Reliability with Immune Algorithm and Support Vector Regression (면역 알고리즘 기반의 서포트 벡터 회귀를 이용한 소프트웨어 신뢰도 추정)

  • Kwon, Ki-Tae;Lee, Joon-Kil
    • Journal of Information Technology Services
    • /
    • v.8 no.4
    • /
    • pp.129-140
    • /
    • 2009
  • The accurate estimation of software reliability is important to a successful development in software engineering. Until recent days, the models using regression analysis based on statistical algorithm and machine learning method have been used. However, this paper estimates the software reliability using support vector regression, a sort of machine learning technique. Also, it finds the best set of optimized parameters applying immune algorithm, changing the number of generations, memory cells, and allele. The proposed IA-SVR model outperforms some recent results reported in the literature.

Evaluation of Attribute Selection Methods and Prior Discretization in Supervised Learning

  • Cha, Woon Ock;Huh, Moon Yul
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.879-894
    • /
    • 2003
  • We evaluated the efficiencies of applying attribute selection methods and prior discretization to supervised learning, modelled by C4.5 and Naive Bayes. Three databases were obtained from UCI data archive, which consisted of continuous attributes except for one decision attribute. Four methods were used for attribute selection : MDI, ReliefF, Gain Ratio and Consistency-based method. MDI and ReliefF can be used for both continuous and discrete attributes, but the other two methods can be used only for discrete attributes. Discretization was performed using the Fayyad and Irani method. To investigate the effect of noise included in the database, noises were introduced into the data sets up to the extents of 10 or 20%, and then the data, including those either containing the noises or not, were processed through the steps of attribute selection, discretization and classification. The results of this study indicate that classification of the data based on selected attributes yields higher accuracy than in the case of classifying the full data set, and prior discretization does not lower the accuracy.

Predicting movie audience with stacked generalization by combining machine learning algorithms

  • Park, Junghoon;Lim, Changwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.217-232
    • /
    • 2021
  • The Korea film industry has matured and the number of movie-watching per capita has reached the highest level in the world. Since then, movie industry growth rate is decreasing and even the total sales of movies per year slightly decreased in 2018. The number of moviegoers is the first factor of sales in movie industry and also an important factor influencing additional sales. Thus it is important to predict the number of movie audiences. In this study, we predict the cumulative number of audiences of films using stacking, an ensemble method. Stacking is a kind of ensemble method that combines all the algorithms used in the prediction. We use box office data from Korea Film Council and web comment data from Daum Movie (www.movie.daum.net). This paper describes the process of collecting and preprocessing of explanatory variables and explains regression models used in stacking. Final stacking model outperforms in the prediction of test set in terms of RMSE.

Character Recognition Based on Adaptive Statistical Learning Algorithm

  • K.C. Koh;Park, H.J.;Kim, J.S.;K. Koh;H.S. Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.109.2-109
    • /
    • 2001
  • In the PCB assembly lines, as components become more complex and smaller, the conventional inspection method using traditional ICT and function test show their limitations in application. The automatic optical inspection(AOI) gradually becomes the alternative in the PCB assembly line. In Particular, the PCB inspection machines need more reliable and flexible object recognition algorithms for high inspection accuracy. The conventional AOI machines use the algorithmic approaches such as template matching, Fourier analysis, edge analysis, geometric feature recognition or optical character recognition (OCR), which mostly require much of teaching time and expertise of human operators. To solve this problem, in this paper, a statistical learning based part recognition method is proposed. The performance of the ...

  • PDF