• Title/Summary/Keyword: statistical estimate

Search Result 1,682, Processing Time 0.025 seconds

Transmission Loss Prediction of the High Speed Railway's Wall Section (고속철도 차량 벽면의 투과손실값 예측)

  • Kim, Kwan-Ju;Park, Jin-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.1-6
    • /
    • 2006
  • The purpose of this study is to calculate transmission loss of the high speed railway's wall section accurately. Transmission loss measurement of ideal case i.e. the wall in the laboratory condition was carried out in first, which results were compared with those by statistical energy method. Transmission loss values of high speed railway calculated out by experimental method are compared with those from closed form solution. Commercial statistical energy analysis was also used to predict the outside pressure level using those measured transmission loss values. Simple SEA model could estimate reasonable exterior sound pressure level.

Nonstationary Frequency Analysis of Hydrologic Extreme Variables Considering of Seasonality and Trend (계절성과 경향성을 고려한 극치수문자료의 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.581-585
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend seasonal analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel and GEV extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both trend and seasonal analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. In addition, full annual cycle of the design rainfall through seasonal model could be applied to annual control such as dam operation, flood control, irrigation water management, and so on. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

  • PDF

Statistical Inferences on the Lognormal Hazard Function under Type I Censored Data

  • Kil Ho Cho;In Suk Lee;Jeen Kap Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.20-26
    • /
    • 1994
  • The hazard function is a non-negative function that measures the propensity of failure in the immediate furture, and is frequently used as a decision criterion, especially in replacement decisions. In this paper, we compute approximate confidence intervals for the lognormal hazard function under Type I censored data, and show how to choose the sample size needed to estimate a point on the hazard function with a specified degree of precision. Also we provide a table that can be used to compute the sample size.

  • PDF

On the Exponentiated Generalized Modified Weibull Distribution

  • Aryal, Gokarna;Elbatal, Ibrahim
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.333-348
    • /
    • 2015
  • In this paper, we study a generalization of the modified Weibull distribution. The generalization follows the recent work of Cordeiro et al. (2013) and is based on a class of exponentiated generalized distributions that can be interpreted as a double construction of Lehmann. We introduce a class of exponentiated generalized modified Weibull (EGMW) distribution and provide a list of some well-known distributions embedded within the proposed distribution. We derive some mathematical properties of this class that include ordinary moments, generating function and order statistics. We propose a maximum likelihood method to estimate model parameters and provide simulation results to assess the model performance. Real data is used to illustrate the usefulness of the proposed distribution for modeling reliability data.

On the maximum likelihood estimators for parameters of a Weibull distribution under random censoring

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.241-250
    • /
    • 2016
  • In this paper, we consider statistical inferences on the estimation of the parameters of a Weibull distribution when data are randomly censored. Maximum likelihood estimators (MLEs) and approximate MLEs are derived to estimate the parameters. We consider two cases for the censoring model: the assumption that the censoring distribution does not involve any parameters of interest and a censoring distribution that follows a Weibull distribution. A simulation study is conducted to compare the performances of the estimators. The result shows that the MLEs and the approximate MLEs are similar in terms of biases and mean square errors; in addition, the assumption of the censoring model has a strong influence on the estimation of scale parameter.

Truncation Parameter Selection in Binary Choice Models (이항 선택 모형에서의 절단 모수 선택)

  • Kim, Kwang-Rae;Cho, Kyu-Dong;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.811-827
    • /
    • 2010
  • This paper deals with a density estimation method in binary choice models that can be regarded as a statistical inverse problem. We use an orthogonal basis to estimate density function and consider the choice of an appropriate truncation parameter to reflect the model complexity and the prediction accuracy. We propose a data-dependent rule to choose the truncation parameter in the context of binary choice models. A numerical simulation is provided to illustrate the performance of the proposed method.

On inference of multivariate means under ranked set sampling

  • Rochani, Haresh;Linder, Daniel F.;Samawi, Hani;Panchal, Viral
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • In many studies, a researcher attempts to describe a population where units are measured for multiple outcomes, or responses. In this paper, we present an efficient procedure based on ranked set sampling to estimate and perform hypothesis testing on a multivariate mean. The method is based on ranking on an auxiliary covariate, which is assumed to be correlated with the multivariate response, in order to improve the efficiency of the estimation. We showed that the proposed estimators developed under this sampling scheme are unbiased, have smaller variance in the multivariate sense, and are asymptotically Gaussian. We also demonstrated that the efficiency of multivariate regression estimator can be improved by using Ranked set sampling. A bootstrap routine is developed in the statistical software R to perform inference when the sample size is small. We use a simulation study to investigate the performance of the method under known conditions and apply the method to the biomarker data collected in China Health and Nutrition Survey (CHNS 2009) data.

A case study of competing risk analysis in the presence of missing data

  • Limei Zhou;Peter C. Austin;Husam Abdel-Qadir
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.1-19
    • /
    • 2023
  • Observational data with missing or incomplete data are common in biomedical research. Multiple imputation is an effective approach to handle missing data with the ability to decrease bias while increasing statistical power and efficiency. In recent years propensity score (PS) matching has been increasingly used in observational studies to estimate treatment effect as it can reduce confounding due to measured baseline covariates. In this paper, we describe in detail approaches to competing risk analysis in the setting of incomplete observational data when using PS matching. First, we used multiple imputation to impute several missing variables simultaneously, then conducted propensity-score matching to match statin-exposed patients with those unexposed. Afterwards, we assessed the effect of statin exposure on the risk of heart failure-related hospitalizations or emergency visits by estimating both relative and absolute effects. Collectively, we provided a general methodological framework to assess treatment effect in incomplete observational data. In addition, we presented a practical approach to produce overall cumulative incidence function (CIF) based on estimates from multiple imputed and PS-matched samples.

A New Methodology for Software Reliability based on Statistical Modeling

  • Avinash S;Y.Srinivas;P.Annan naidu
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.157-161
    • /
    • 2023
  • Reliability is one of the computable quality features of the software. To assess the reliability the software reliability growth models(SRGMS) are used at different test times based on statistical learning models. In all situations, Tradational time-based SRGMS may not be enough, and such models cannot recognize errors in small and medium sized applications.Numerous traditional reliability measures are used to test software errors during application development and testing. In the software testing and maintenance phase, however, new errors are taken into consideration in real time in order to decide the reliability estimate. In this article, we suggest using the Weibull model as a computational approach to eradicate the problem of software reliability modeling. In the suggested model, a new distribution model is suggested to improve the reliability estimation method. We compute the model developed and stabilize its efficiency with other popular software reliability growth models from the research publication. Our assessment results show that the proposed Model is worthier to S-shaped Yamada, Generalized Poisson, NHPP.

Statistical Evaluation Method of Irradiated Materials Properties by Nano-Indentation Method

  • V.P. Alekin;I.S. Cho;Y.S. Pyun;C.H. Hahn;Park, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.62-62
    • /
    • 2003
  • A statistical evaluation method was proposed to evaluate mechanical properties by using small specimens and nano-indentation for irradiation study. The method is empirically based on nano-indentation which values are statistically treated. The nano-indentation in function of indentation depth (h) is expressed using the variation factor V(h). Statistical parameters of the indentation are given by histograms. Analytical and experimental relation between histograms of phase dimension distribution and parameters V(h) and G(h) is considered using the condition of additivity of phases' microhardness. The method is applied to estimate mechanical properties of irradiated materials.

  • PDF